Some points on Na⁺ and Li⁺ complexes with nafion sidechain:

- Both full and partial optimizations (with only the cation moving relative to fixed chain) suggest 2 coordinated complexes. In case of full optimization and Li⁺ the distance with the nearest F (~2.2 Å) indicates some interaction, while that of Na⁺ (~3.4 Å) does not (also indicated by the shape of 2-coord dihedral scans) (also notice that solvent may change situation).
- 2) Larger basis set provides lower total energy while well shape is very similar (3-coord complexes). The 3-coordinated well shapes between Li⁺ and Na⁺ differ considerably.

Li⁺ - nafion, diagonal;

Li⁺ - nafion, side view

 Na^+ - nation, side view

Basis set dependance of energy well shape of 3-coordinated Li⁺ and nafion sidechain. Pregiven geometry of sidechain. BSSE corrected by Counterpoise method.

-2307.4

-2307.5

Nafion -Li (3 coord) CP BSSE corr

Energy well shape of Li⁺ 3-coordinated to nafion sidechain. Pregiven geometry. BSSE corrected by Counterpoise method. Distance given as Li - S

5

Energy well shape of Na⁺ 3-coordinated to nafion sidechain. Pregiven geometry. BSSE corrected by Counterpoise method. Disance as Li - S

Comparison of energy vs distance plots of 3-, 2- and 1-coordinated nafion sidechain – Li⁺ Slight complexes. surprise to find 3coordinated complexes to be most unstable. All energies with Counterpoise BSSE correction. Note that 1-coord distance is given as Li-O, others as Li-S, hence shift of well location.

Comparison of energy vs distance plots of 3-, 2- and 1-coordinated nafion sidechain -Na⁺ complexes. Same surprise to find 3coordinated complexes to be most unstable. All energies with Counterpoise BSSE correction. Note that 1-coord distance is given as Li-O, others as Li-S, hence shift of well location.

Energy well shape of ${\rm Li}^+$ 2-coordinated to nafion sidechain. Fully optimized geometry, distance Li – S. BSSE corrected by Counterpoise method.

Energy well shape of Li⁺ 2-coordinated to nation sidechain. Fully optimized geometry, dihedral angle from O-S-0 plane. BSSE corrected by Counterpoise method. Lack of symmetry due to the influence of the nearest Fatom.

Energy well shape of Li^+ 2-coordinated to nation sidechain. Fully optimized geometry, distance Li - S. BSSE corrected by Counterpoise method

Energy well shape of Na⁺ 2-coordinated to nafion sidechain. Fully optimized geometry, dihedral angle from O-S-0 plane. BSSE corrected by Counterpoise method.

Energy well shape of Li^+ 1-coordinated to nafion sidechain. Fully optimized geometry, distance Li - O. BSSE corrected by Counterpoise method.

Energy well shape of Na^+ 1-coordinated to nafion sidechain. Fully optimized geometry, distance Li – O. BSSE corrected by Counterpoise method.

 Li^+ -nafion side chain charges (CHELPG, B3LYP/6-311+G(d,p)

The charge distribution is relatively similar with both cations.

1	С	0.675
2	F	-0.224
3	F	-0.203
4	F	-0.143
5	0	-0.216
6	С	0.489
7	С	0.176
8	С	0.750
9	F	-0.212
10	F	-0.176
11	F	-0.134
12	Ο	-0.367
13	С	0.411
14	С	0.733
15	S	0.737
16	Ο	-0.565
17	F	-0.157
18	F	-0.234
19	F	-0.218
20	F	-0.174
21	F	-0.166
22	F	-0.217
23	F	-0.214
24	Ο	-0.609
25	Ο	-0.601
26	Li	0.860

Na⁺ -nafion sidechain charges (CHELPG, B3LYP/6-311+G(d,p)

Li			Na			
distance	3D	2D	1D	3D	2D	1D
1.0			-2308.075			
1.2			-2308.325			
1.4	-2308.100		-2308.417			-2462.999
1.6	-2308.226	-2308.302	-2308.444	-2462.806		-2463.144
1.8	-2308.287	-2308.408	-2308.445	-2462.963		-2463.198
2.0	-2308.314	-2308.463	-2308.437	-2463.044	-2463.081	-2463.213
2.2	-2308.322	-2308.487	-2308.425	-2463.082	-2463.183	-2463.213
2.4	-2308.320	-2308.492	-2308.414	-2463.097	-2463.232	-2463.206
2.6	-2308.314	-2308.487	-2308.404	-2463.099	-2463.252	-2463.198
2.8	-2308.305	-2308.477	-2308.394	-2463.095	-2463.255	-2463.190
3.0	-2308.295	-2308.465	-2308.386	-2463.089	-2463.251	-2463.182
3.2	-2308.286	-2308.453	-2308.379	-2463.081	-2463.243	-2463.175
3.4	-2308.277	-2308.441	-2308.372	-2463.073	-2463.234	-2463.169
3.6	-2308.269	-2308.429	-2308.367	-2463.065	-2463.224	-2463.163
3.8	-2308.261	-2308.419	-2308.362	-2463.057	-2463.215	-2463.158
4.0	-2308.254	-2308.409	-2308.357	-2463.050	-2463.207	-2463.154
4.2	-2308.247	-2308.401	-2308.353	-2463.044	-2463.199	-2463.150
4.4	-2308.242	-2308.393	-2308.350	-2463.038	-2463.192	-2463.146
4.6	-2308.236	-2308.386	-2308.346	-2463.033	-2463.185	-2463.143
4.8	-2308.231	-2308.380	-2308.344	-2463.028	-2463.179	-2463.140
5.0	-2308.227	-2308.375	-2308.342	-2463.024	-2463.174	-2463.138
5.2	-2308.223	-2308.370		-2463.019	-2463.169	-2463.135
5.4	-2308.219	-2308.365		-2463.016	-2463.165	-2463.133
5.6	-2308.215			-2463.012	-2463.161	

Total energy vs distance of 3-, 2-. 1-coordinated complexes.

Total chergy vs diffedral angle						
dihedral angle	Na 2-coord	Li 2-coord.				
-35.00	-2463.25	-2308.47				
-30.00	-2463.25	-2308.48				
-25.00	-2463.25	-2308.49				
-20.00	-2463.25	-2308.49				
-15.00	-2463.25	-2308.49				
-10.00	-2463.26	-2308.49				
-5.00	-2463.26	-2308.49				
0.00	-2463.26	-2308.49				
5.00	-2463.26	-2308.49				
10.00	-2463.25	-2308.49				
15.00	-2463.25	-2308.49				
20.00	-2463.25	-2308.48				
25.00	-2463.25	-2308.48				
30.00	-2463.25	-2308.48				
35.00	-2463.25	-2308.48				

Total energy vs dihedral angle