P740.HW1.sol.tex

1. Speed of tsunamis. This is just about numbers. With plausible choices the depth of an earth ocean is a few kilometers.
2. Size of linear fluctuations. See note P740.1.tex. The important physical idea is that all of the dimensionless measures of the sizes of things are about the same. From below Eq. (4) find the relationship of $\delta \rho$ to δP. Put it in the form

$$
\begin{equation*}
\frac{\delta \rho}{\rho_{0}}=\frac{P_{0}}{\rho_{0}}\left(\frac{\partial \rho}{\partial P}\right) \frac{\delta P}{P_{0}}=C_{\rho, P} \frac{\delta P}{P_{0}} \tag{1}
\end{equation*}
$$

From Eq. (9)

$$
\begin{equation*}
\frac{\delta \rho}{\rho_{0}}=\frac{|\delta \mathbf{v}|}{c_{0}}=C_{\rho, P} \frac{\delta P}{P_{0}} \tag{2}
\end{equation*}
$$

For an ideal gas $(\partial \rho / \partial P)=\rho / P$, i.e., $C_{\rho, P}=1$ and

$$
\begin{equation*}
\frac{\delta \rho}{\rho_{0}}=\frac{|\delta \mathbf{v}|}{c_{0}}=\frac{\delta P}{P_{0}} \tag{3}
\end{equation*}
$$

Even when you don't have an ideal gas you might begin by expecting this relation to be approximately the case.

There is a second point, the astonishing dynamic range of the ear. Look up some numbers.
3. Random walker. Examples of MATLAB files for doing this problem are on the course web page, Homework, rwlistings.

This problem can also be done analytically. From

$$
\begin{equation*}
(a+b)^{N}=\sum_{n=0}^{N} a^{N-n} b^{n} \frac{N!}{n!(N-n)!}=\sum_{n=0}^{N} p_{n} \tag{4}
\end{equation*}
$$

where $a+b=1$ and p_{n} is the probability of taking $N-n$ steps to the right and n steps to the left. When the walker has taken n steps to the left he is at $L_{n}=N-2 n$ (a factor of 2 because he didn't take the n steps to the right). The average distance (squared distance) the walker goes in N steps is

$$
\begin{equation*}
<L>=\sum_{n=0}^{N}(N-2 n) p_{n}=N-2<n> \tag{5}
\end{equation*}
$$

$$
\begin{align*}
<L^{2}> & =\sum_{n=0}^{N}(N-2 n)^{2} p_{n}=N^{2}-4 N<n>+4<n>^{2} \tag{6}\\
<f(n)> & =\sum_{n=0}^{N} f(n) p_{n} \tag{7}
\end{align*}
$$

If you write out the equations for $\langle n\rangle$ and $\left\langle n^{2}\right\rangle$ you can show that

$$
\begin{align*}
& <n>=b \frac{d}{d b} \sum_{n=0}^{N} p_{n}=b \frac{d}{d b}(a+b)^{N}=N b \tag{8}\\
& <n^{2}>=b \frac{d}{d b} b \frac{d}{d b} \sum_{n=0}^{N} p_{n}=b \frac{d}{d b} b \frac{d}{d b}(a+b)^{N}=N^{2} b^{2}+N b(1-b) \tag{9}
\end{align*}
$$

etc. Thus

$$
\begin{equation*}
\delta L^{2}=<L^{2}>-<L>^{2}=4 N b(1-b) \tag{11}
\end{equation*}
$$

for any b; $<L^{2}>-<L>^{2}=N$ for $b=1 / 2$, i.e. $<x^{2}>=D_{D} t$ with $D_{D}=a^{2} / \tau$ (subscript D for discrete).
Aside. When you study the RW problem in the continuum approximation

$$
\begin{equation*}
\frac{\partial p}{\partial t}=D_{C} \frac{\partial^{2} p}{\partial x^{2}} \tag{12}
\end{equation*}
$$

(subscript C for continuum) you get

$$
\begin{equation*}
<x^{2}>=2 D_{C} t \tag{13}
\end{equation*}
$$

The apparent discrepancy is resolved when you turn the discrete RW into a continuum RW. You find $D_{C}=D_{D} / 2$.

