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I. An example. [This is out of the clear blue sky. Expect to understand this in detail

later.]

I.A There are two equations that describe a fluid, the continuity equation and the Navier

-Stokes equation. The first is a statement of the conservation of matter and the second is a

statement of the conservation of momentum (the analogue of Newton II). The variables in

these equations are density, ρ, velocity, v, pressure, P and such. The two equations are

1. continuiiy
∂ρ

∂t
+∇ · (ρv) = 0, (1)

2. Navier-Stokes (approximately)

∂v

∂t
+ v · ∇v = −1

ρ
∇P + η∇2v. (2)

Remarks and observations:

1. We are not using microscopic variables, particle mass, particle velocity, etc. The

variables involved are coarse grained; ρ, P , v, · · · are associated with a differential

element of volume, dV = dxdydz, in which the mass is dm = ρdV , the velocity v is

the average of the velocity of the particles in the volume, etc.

2. These equations are nonlinear. What does this mean?

3. Count variables and equations. If we agree that η is a viscosity with known value only

ρ, P and v are left. So in D dimensions that’s NV = D + 2 variables and NE = D + 1

equations. We might close these equations (NV = NE) by asserting that we know P

as a function of ρ, P = ρkBT/m or some such. Rule of this type are equations of state,

the province of thermodynamics! Yuk!!! You may have to know some thermo to get

very far with the N-S equation?

4. If you check the dimensions of η they are L2/T , like a diffusion constant. The viscosity

is a transport coefficient. Transport coefficients describe the transport of something.

In the case of a diffusion coefficient it would be a particle current, e.g., J = −D∇n.

You can formulate a description of transport processes in non-equilibrium statistical
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physics. Non-equilibrium because you have to continuously do work to maintain the

(particle) current. For a more familiar example, think about an electric current.

From these observations a rough outline for the semester is suggested, Stat. Mech. (4

week), Thermo. (4 weeks), Transport Phenomena (4 weeks), that leaves 2 weeks to do

Fluid Mechanics. As the text is 531 pages in length the pace towrd the end of the course

will be quite rapid. More about the outline below. But first let’s get something out of

Eqs. (1) and (2).

I.B Suppose Eqs. (1) and (2) described a fluid that in near equilibrium at (ρ0, P0,v0 = 0)

throughout space. Small local departures from equilibrium would involve ρ = ρ0 + δρ,

P = P0 + δP and v = v0 + δv = δv, where δρ(x, t), δP (x, t) and δv(x, t) are first order. If

we decide to linearize Eqs. (1) and (2) we would drop the (δv ·∇δ)v as second order, replace

ρ−1∇P by ρ−1
0 ∇δP , etc. with the results

∂δρ

∂t
+ ρ0∇ · (δv) = 0, (3)

and
∂δv

∂t
= − 1

ρ0

∇δP + η∇2δv. (4)

We still have NV 6= NE. Your local thermodynamicist will provide you with P (ρ). Use this

relation near (ρ0, P0,v0 = 0), δP = (∂P/∂ρ)0 δρ. If you check the dimensions of (∂P/∂ρ)0

you should find it has those of a velocity squared. So define c2
0 = (∂P/∂ρ)0. Then the pair

of equations is

∂δρ

∂t
+ ρ0∇ · (δv) = 0, (5)

∂δv

∂t
+

c2
0

ρ0

∇δρ− η∇2δv = 0. (6)

The quantities ρ0, c2
0 and η are presumed known and are parameters in what we are doing.

The equations are linear in δρ and δv which are to be found. The equations are homogeneous,

i.e., there is nothing that forces either δρ or δv to be non-zero, like mẍ = −Kx but not

like mẍ = −Kx + F sin ω0t. While δρ = δv = 0 is a solution to Eqs. (5) and (6) a more

interesting discussion follows if one assumes δρ and δv are non-zero and wonders how they

are related to one another. Guess

δρ = Aei(k·x−ωt), (7)

δv = Bei(k·x−ωt), (8)
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FIG. 1: Coarse Grained. Fluid dynamic variables are local values of things like ρ, P , v, · · · that

are assigned to differential elements of volume, dV = dxdydz. If dV is too large it is not useful,

e.g., the right hand side of the Atlantic ocean. If dV is too small it is not useful, e.g., a cubic

Angstrom in a room temperature, atmospheric pressure gas. A dV of (1 mm)3 has a fluctuation

in n = ρ/m of about 1 part in 108 (room temperature, atmospheric pressure). Why?
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FIG. 2: Fluctuation Away From Equilibrium. At (ρ0, P0,v0 = 0) there are small departures in

ρ, P and v. These fluctuatons may be spatially local, depend on x, and can change in time. In

equilibrium δρ = δP = δv = 0.
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and substitute into Eqs. (5) and (6). [If this is a bad idea you won’t find anything interesting

and you’ll have to try something else.] So do the algebra and find

−iωA + ρ0 ik ·B = 0, (9)

−iωB +
c2
0

ρ0

ikA + ηk2B = 0. (10)

Define C = ik ·B and form this quantity in the second equation

−iωA + ρ0C = 0, (11)

−iωC +
c2
0

ρ0

k2A + ηk2C = 0. (12)

Solution to this pair of equations leads to a relationship between the frequency ω and the

wavevector k

ω2 = c2
0k

2 − iηωk2 (13)

and a relationship between the size of the two fluctuations,

A = ρ0
k ·B

ω
. (14)

This last equation is essentially δρ/ρ0 ≈ |δv|/c0.

II Syllabus: very approximate.

Part I; Introduction

1. Review of useful stuff (1 week)

(a) Stat. Mech.

(b) Thermo

(c) Getting transport coefficients

2. Liousville equation to Boltzmann equation (2 weeks)

(a) ”Derive” Boltzmann equation

(b) Get Euler and Navier-Stokes from Boltzmann

(c) Numerical implementation of Boltzmann

3. Navier-Stokes, etc. from conservation laws (1 week)

5



4. A look at computational fluid dynamics (1 week)

Part II: Topics of Interest

Various items from the first 9 chapters of L and L (possibly including) shallow/deep water

waves, tsunami, KdV solitons, shock waves, onset of turbulence, a curve ball, ”slice”?, traffic,

oscillons, and topics that arise.

6


