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Abstract
First principles calculations show that two-body forces are sufficient to describe
interactions of He with fcc Cu and bcc Nb. This property is explained directly
from calculated charge density distributions and used to construct a Cu–Nb–He
interatomic potential that predicts accurate He impurity energies despite not
being fitted to them.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

He produced by (n, α) transmutation reactions plays an important role in the microstructural
evolution of irradiated materials [1]. In crystalline solids, He leads to bubble formation [2] and
growth into voids [3], blistering [4], as well as accelerated swelling [5] and embrittlement [6].
He-implanted Cu–Nb multilayer nanocomposites, however, have shown reduced He-induced
degradation compared with pure Cu or Nb [7–9]. Insight into the behavior of He in Cu–Nb
multilayers may be obtained using atomistic simulations, but a reliable Cu–Nb–He potential
is required. Here we describe the construction of such a potential.

Previous efforts to construct Cu–He [10] and Nb–He [11] potentials were based on
the Hartree–Fock–Slater approximation and a numerical integration scheme developed by
Wedepohl [12]. We use density functional theory (DFT) calculations to show that He
interacts with fcc Cu, bcc Nb and other He atoms in fcc Cu and bcc Nb through short-
range, radial, environment-independent forces. These forces are used to obtain two-body
interaction potentials for He in Cu and Nb that predict He impurity formation energies in
excellent agreement with DFT.

2. Methodology

DFT calculations are carried out under periodic boundary conditions using the Quantum
ESPRESSO code [13]. For Cu, the Rabe–Rappe–Kaxiras–Joannnopolous ultrasoft
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Table 1. Comparison between DFT-calculated and experimental values of lattice parameter (a0),
cohesive energy (Ecoh) and bulk modulus (B) for Cu and Nb.

Quantity a0 (Å) Ecoh (eV) B (GPa)

Cu, DFT (GGA) 3.676 3.474 139.02
Cu, DFT (LDA) 3.551 4.459 170.01
Cu, experiment 3.615 [20] 3.54 [21] 142.0 [22]
Nb, DFT (GGA) 3.310 7.293 168.0
Nb, experiment 3.3008 [23] 7.47 [24] 173.0 [22]

pseudopotential [14] and for Nb, the Vanderbilt ultrasoft pseudopotential [15] is used. For
both Cu and Nb, the Perdew–Burke–Ernzerhof generalized gradient approximation (GGA) [16]
exchange-correlation functional is employed. Selected results are compared with calculations
carried out using the local density approximation (LDA) [17]. An energy cut-off for
wavefunctions of 800 eV is chosen and Methfessel–Paxton smearing of 0.14 eV is applied
to perform the Brillouin zone (BZ) integration. The BZ is sampled using a Monckhorst–Pack
k-point mesh and all calculations are checked for k-point convergence. Table 1 shows that
selected physical properties calculated at 0 K for fcc Cu and bcc Nb are in reasonable agreement
with experimentally determined values. Consistent with previous studies, GGA overpredicts
equilibrium lattice parameters and underpredicts cohesive energies. The opposite is true of
LDA [18, 19].

Forces between He and other atoms X (Cu, Nb, or He) are calculated as functions of
interatomic distance, r , via three methods. In the first, the force between atoms in a He–X

dimer is found as a function of bond length. In the second, a He atom is inserted into a high
symmetry site in a perfect crystal of X and the forces on all atoms are calculated without
allowing the atomic structure to relax. Due to the symmetry of the crystal, the net force on
the He atom is zero, as is the net force on any X atom due to all other X atoms. Thus, any
resultant force on an X atom is due to interactions with He. Varying the lattice parameter of
the crystal modifies He–X interatomic distances and allows the full force–distance curve to be
computed.

The third method can be used to calculate forces due to a He atom inserted into any chosen
configuration of X atoms. First, the forces FX exerted by X atoms on each other in the absence
of He are computed. Next, a He atom is inserted at the desired location and the total forces
FX+He on X atoms in the presence of He are computed. Subtracting FX from these forces gives
FHe–X, the increment of force on any atom X due to the presence of He:

FHe–X = FX+He − FX. (1)

This method is employed to calculate the forces on configurations of X atoms obtained during
several steps of conjugate gradient energy minimization relaxation of He octahedral, tetrahedral
and substitutional impurities in the metal lattice in DFT. In addition, forces acting on metal
atoms by a He octahedral interstitial shifted to low symmetry locations along the 〈1 0 0〉, 〈1 1 0〉
and 〈1 1 1〉 directions are also calculated using equation (1). Figure 1 illustrates this calculation
on the example of a relaxed He octahedral interstitial in fcc Cu.

3. Results

He–Cu forces calculated by all three of the methods introduced above are presented in figure 2.
Lattice expansion calculations are performed for a He octahedral interstitial in an 8-atom fcc Cu
matrix using both GGA and LDA. In both cases, He only interacts with its nearest neighbor Cu
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Figure 1. For a relaxed He octahedral interstitial (gray) in fcc Cu (yellow), He–Cu interatomic
forces, FHe–Cu, are computed as differences between (a) the total force on Cu atoms in the presence
of He, FCu+He and (b) forces exerted by Cu atoms on each other in the absence of He, FCu (see
equation (1)).
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Figure 2. He–Cu force–distance curves, FCu–He(r), calculated using the three different methods
described in the text. The force–distance curve obtained from GGA lattice expansion calculation
used to fit the Cu–He potential is in good agreement with force–distance data calculated from the
relaxation of He defects in a 27-atom fcc Cu supercell.

atoms, no Cu atom interacts with more than one He atom and the He–Cu force–distance curves
match closely, despite the different properties of pure Cu predicted by GGA and LDA (table 1).
He–Cu forces determined from various stages in the relaxation of He octahedral, tetrahedral
and substitutional impurities in a 27-atom fcc Cu crystal are in excellent agreement with the
lattice expansion simulations, indicating that the forces do not depend on the detailed structure
of He atom environments. The centrality of all He–Cu forces is confirmed by shifting a He
octahedral interstitial to low symmetry locations along the 〈1 0 0〉, 〈1 1 0〉 and 〈1 1 1〉 directions
and confirming that the angle between the Cu–He force and radius vectors is zero. This result
may be explained directly from the electronic charge densities computed in DFT.
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Figure 3. Plot of the redistribution of charge density, �ρ, for an octahedral He interstitial in fcc Cu
along the 〈1 0 0〉, 〈1 1 0〉, 〈1 1 1〉 directions. The He atom is at the origin and the distance to the first
nearest neighbor (NN) Cu atom is shown. The inset shows the ±0.02 electron Å−3�ρ isosurface
for the Cu (right)-He (left) dimer. Positive charge density differences are in yellow and negative
in blue.

The relaxed charge density distribution around the octahedral He defect in fcc Cu, ρCu+He,
is compared with the superposition (ρCu +ρHe) of the ground state charge densities of the same
system without the He impurity ρCu (i.e. containing Cu atoms only) and an isolated He atom
ρHe. The difference between ρCu+He and (ρCu + ρHe) gives �ρ, the redistribution of the charge
density in the electronic ground state of the combined system:

�ρ = ρCu+He − (ρCu + ρHe). (2)

Values of �ρ as a function of distance from a He octahedral along three crystallographic
directions are shown in figure 3.

In the case of the octahedral He interstitial in fcc Cu, the largest variation in charge density
occurs along the 〈1 0 0〉 direction between the Cu and He atom. Charge is depleted around
the He atom and builds up around its first nearest neighbor. The energy associated with �ρ is
estimated by taking the difference in the relaxation energies of the electronic charge densities
of the combined Cu–He system and that of the same system without the He impurity (the
self-consistent electronic charge density relaxations are initialized to a superposition of atomic
orbital densities in both cases). This energy difference is on the order of 1.2 eV or 0.1 eV per
Cu–He bond: a low value that can be attributed to the high first ionization energy and zero
electron affinity arising from the closed shell electronic structure of He. The charge density
distribution obtained by the superposition of the charge densities of fcc Cu and an isolated He
atom is therefore a good approximation to the ground state charge density of He defects in Cu.

We use this insight along with the Hellmann–Feynman equation [25, 26] (equation (3)) to
demonstrate the centrality of He–Cu forces:

FCu = −
∫

ρ(r)
∂vCu(r − RCu)

∂RCu
dr − ∂EN({R})

∂RCu
−

∫
δEN({R})

δρ(r)

∂ρ(r)

∂RCu
dr. (3)

In the above expression, ρ(r) is the electronic charge density for the spatial configuration
of nuclei, {R}. The force on a Cu atom, FCu, with nuclear coordinates RCu arises
from the electron–nucleus Coulombic interaction, vCu(r − RCu), and the nucleus–nucleus
Coulombic interaction, EN({R}). According to the variational principle [27], the last term in
equation (3) vanishes identically for the ground state charge density, which we assume to be
the superposition of the charge densities of fcc Cu and an isolated He atom: ρ = ρCu + ρHe.
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Substituting this expression into equation (3) and subtracting the forces exerted by the other
Cu atoms in the absence of the He atom, we obtain an expression for the Cu–He force:

FHe–Cu = − ZCu

4πε0

∫
ρHe(r)

(r − RCu)2
dr +

ZCuZHe

4πε0(RHe − RCu)2
, (4)

where ε0 is the permittivity of vacuum, ZCu, ZHe are the atomic numbers and RCu, RHe are
the nuclear coordinates of Cu and He, respectively. The second term on the right-hand side of
equation (4) is the Cu–He nuclear interaction: a radially repulsive force. Because the charge
density of an isolated He atom is spherically symmetric, the first term on the right-hand side of
equation (4) yields a radially attractive force. Thus, equation (4) demonstrates that the Cu–He
interatomic force is central if the ground state charge density is ρ = ρCu + ρHe.

Figure 2 shows that the force–distance curves obtained by different methods for He in
fcc Cu are in excellent agreement, but the force–distance curve obtained form a Cu–He dimer
calculation is markedly different. This too can be explained from an investigation of charge
densities. The charge density redistribution �ρ was computed for the Cu–He dimer using
equation (2). The energy decrease per Cu–He bond of 0.2 eV associated with �ρ for the dimer
is larger than that in the case of the He octahedral in fcc Cu. The �ρ = ±0.02 electrons Å−3

isosurface is shown as an inset in figure 3. The largest magnitude of �ρ occurs along the dimer
axis and is twice that for He defects in fcc Cu. In contrast to He in fcc Cu, the charge density
redistribution along the dimer axis increases near the He atom. Therefore, the ground state
charge density of a Cu–He dimer is a poor approximation to the ground state charge density
of He defects in fcc Cu.

A similar procedure to the one described above is employed to obtain the Nb–He force
as a function of interatomic distance. 8 Nb atoms are used in lattice expansion simulations
and 16 atoms in He interstitial and substitutional simulations. All forces are central, limited in
range to Nb second nearest neighbors, and collapse onto a single force–distance curve. He–He
interactions are studied by inserting He dimers and trimers into octahedral sites in fcc Cu and
bcc Nb. Distances between He atoms are varied by systematically changing the position of any
1 He atom while keeping the positions of all other atoms fixed, thereby allowing the He–He
force–distance curve to be computed. The He–He force–distance curve obtained from DFT
predicts an equation of state for He in good agreement with experiment [28]. As in the case
of He–Cu and He–Nb, He–He forces are found to be central and limited to nearest neighbors.

The force–distance curves obtained from the lattice expansion calculations are integrated
to obtain two-body He–Cu, He–Nb and He–He interaction energies V (r) [29]. Following
Derlet et al [30], these can be expressed as a sum of cubic knot functions,

V (r) =
N∑

n=1

Vn(rn − r)3�(rn − r), (5)

where �(x) is a Heaviside step function defined as (�(x) = 1 for x > 1 and �(x) = 0 for
x < 0). The parameters Vn and rn are optimized to reproduce the V (r) computed from DFT.
The complete parameterization of the three interatomic potentials is presented in table 2.

The two-body energies in table 2 may be combined with any Cu or Nb potentials to model
Cu–He and Nb–He systems. We joined them with an existing embedded atom method (EAM)
Cu–Nb potential [31]. Energies of He octahedral, tetrahedral and substitutional impurities
in 27-atom fcc Cu supercells and 16-atom bcc Nb supercells calculated with the resulting
Cu–Nb–He potential are in excellent agreement with values obtained from DFT, as shown in
table 3. In computing these values, we define the He defect formation energy, Ef

defect, as

Ef
defect = Efinal(nX, 1He) − Einitial(nX) − 1EHe, (6)
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Table 2. Parameters describing He–Cu, He–Nb and He–He two-body energies, V (r).

Cu–He Nb–He He–He

rn (Å) Vn (eV Å−3) rn (Å) Vn (eV Å−3) rn (Å) Vn (eV Å−3)

0.404 8597 264.830 3863 0.457 0914 142.011 2005 0.258 5328 2559.386 7828
0.729 9170 266.921 9661 0.827 320 78 143.119 6654 0.461 8739 2271.411 5660
1.055 9855 266.702 3756 1.198 9221 143.525 7463 1.105 5558 25.437 2712
1.362 8823 154.078 0438 1.546 0834 86.921 1775 1.499 6950 6444.414 0158
1.954 9572 7.616 6009 2.140 4260 6.126 6237 1.500 0000 6428.869 0273
3.461 7013 0.189 0666 3.822 2607 0.121 8639 2.006 232 2.633 8297

Table 3. Calculated defect energies for He substitutional, tetrahedral and octahedral defects in Cu
and Nb.

Cu Nb

DFT EAM EAM (converged) DFT EAM EAM (converged)
(eV) (eV) (eV) (eV) (eV) (eV)

Octahedral 4.0325 4.0612 4.004 3.7147 3.7500 3.5666
Tetrahedral 4.1627 4.2372 4.1450 3.4547 3.7073 3.4515
Substitutional 1.4281 1.6494 1.5617 1.4158 0.8792 0.8131

where n is the number of metal atoms of type X, Efinal(nX, 1He) is the energy of the relaxed
defect configuration, Einitial(nX) is the energy of the n metal atoms in the initial configuration
without He and EHe is the energy of an isolated He atom. We assumed an ideal gas reference
bath for He, where its chemical potential is 0 eV. The agreement between defect energies
computed by DFT and our potential shown in table 3 are in excellent agreement, despite the
fact that the potential was not fitted to these energies.

The small discrepancies in He defect energies found by DFT and our potential are due
primarily to differences in the calculated properties of Cu and Nb, which may be influenced
by the structure of local atomic environments. We attempted to determine whether these
discrepancies are best correlated with the coordination of the defect site, its background charge
density, or three-body interactions among Cu and Nb atoms neighboring the defect site. As
Seletskaia [32], we find that three-body interactions best describe the discrepancies, but do not
incorporate them into our potential since the error introduced by omitting them is small and
does not justify the additional complexity involved.

The validity of the potential is further tested by comparing the energies and forces
computed in DFT and using the potential in a 27-atom fcc Cu system with the He atom
inserted mid-way between the center of an octahedral site and the nearest neighbor Cu atom.
The force acting on the nearest Cu atom predicted by the potential is 114.8 eV Å−1, which
agrees well with DFT prediction of 114.6 eV Å−1. The energy of the system calculated by the
potential 24.57 eV is also in good agreement with the DFT value of 23.75 eV.

Since He interactions with Cu and Nb are short range and radial, a He impurity atom
may be viewed as a soft misfitting sphere around which Cu and Nb atoms relax elastically.
Therefore, any dependence of He defect energies on system size most likely arises from overlap
of the elastic fields of periodic images of the defect. To validate this claim, we calculate the
formation energy of an octahedral He defect in a 64-atom fcc Cu supercell using the constructed
EAM potential and DFT. The potential gives 4.0296 eV, in good agreement with the DFT
value of 4.003 eV. The decrease in octahedral defect energy due to increase in system size
from 27 to 64 atoms is 0.0295 eV as predicted by DFT, while the decrease predicted by the
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EAM potential is 0.0316. We use our potential to study the convergence of He octahedral,
tetrahedral and substitutional energies with system size in both Cu and Nb. Converged He
defect energies are obtained using a 4000 atom fcc Cu supercell and a 6750 atom bcc Nb
supercell and are given in table 3. In all cases, the energy of the He defect decreases with
increasing system size. However, the relative stability of defects in both fcc Cu and bcc Nb is not
altered.

Our potential may be considered predictive since it is able to compute accurate defect
formation energies despite not being fitted to them. Furthermore, we expect that it is
transferrable to other structures containing He in condensed phases of Cu or Nb on the grounds
of our understanding of the effect of He impurities on total electronic charge density.

4. Conclusions

We have constructed a repulsive Cu–Nb–He pair potential and shown that it is sufficient to
describe He interactions in condensed Cu and Nb. The He defect formation energies predicted
by the potential are in good agreement with DFT data. This work provides an example of
constructing a predictive and transferable empirical potential based directly on the underlying
interatomic bonding physics.
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