Beyond the displacement cascade: nanostructural evolution in metals under irradiation and correlation with mechanical properties

L. Malerba

Structural Materials Modelling and Microstructure Nuclear Materials Science Institute SCK•CEN, Mol – Belgium Imalerba@sckcen.be

Outline

Introduction

Part I – Nanoscopic scale

- Production of damage
- Development of a nanostructure
- Microchemistry
- *The set of the set of*
 - Atomistic Monte Carlo
 - Coarse grained models

Part II – Mesoscopic scale and beyond

- Dislocations and hardening
- How to model this:
 - Dislocation dynamics
- Ideas about multiscale modelling

Introduction: why do we study and model radiation damage?

Hardening: yield strength increase

How does irradiation change the macroscopic properties of steels

To understand this we need to see what radiation does at the proper scales involved ...

Part I: Nanoscopic scale

Production of damage: the displacement cascade

... It all starts with a neutron hitting an atom ...

Neutrons = uncharged particles \Rightarrow can travel long distances in matter When reacting with nuclei of atoms they can produce

- Activation
- Transmutation (He, H)
- Displacement damage (elastic collisions)

Displacement cascade: the mother of all evils ...

A closer look at the cascade phases

STUDIECENTRUM VOOR KERNENERGI CENTRE DÉTLIDE DE LÉNERGIE NUCLÉAIR

Primary state of damage

What happens next? Development of a nanostructure

Clustering of point defects

- Clusters of vacancies
 - 🖙 nano-cavities
 - vacancy dislocation loops
- Clusters of self-interstitials
 interstitial dislocation loops

[110] dumbbell

Stable in Fe if isolated or in small clusters

[111] dumbbell or crowdion

Unstable in Fe if isolated but unit of large clusters

Self-interstitial loops ('prismatic loops')

STUDIECENTRUM VOOR KERNENERG CENTRE DÉTUDE DE L'ÉNERGIE NUCLÉAII

Stacking-fault tetrahedra

3D result

Schaublin et al., Phil. Mag., 2005

Defect migration and cluster growth SIA clusters

SIA clusters migrate fast in 1D

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

Defect migration and cluster growth Vacancy clusters

Vacancy clusters migrate slowly in 3D – can coalesce

Evidence of point-defect cluster growth

Loops in 150 keV Fe⁺ irradiated ultra-high-pure Fe at 300°C

Courtesy of M. Hernández Mayoral

Cavities (above) & Frank loops (below) in irradiated 316 SS at high T

Garner & Gelles, JNM 159 (1988) 286

Defect recombination and disappearance at sinks

Does everyone know what a dislocation and a grain boundary are?

Take home messages

- Either by diffusion or directly in displacement cascades, point-defects tend to join to form clusters
 - Vacancies: cavities, loops, other (stacking fault tetrahedra)
 - SIAs: loops only

> SIA clusters migrate fast in 1D and are highly stable

Vac. clusters migrate slowly in 3D and dissolve above stage V (if not stabilised by something)

Migrating defects eventually recombine or disappear at sinks

Tisible defects are there because they do not move

What happens next? Microchemical changes

Transport of chemical species

If stable, mixed dumbbell transports solutes to sinks

Competition between chemical species

Typical example: radiation-induced segregation

Observed in <u>austenitic steels</u>

Determines higher susceptivity to stress corrosion cracking

Irradiation Dose Effects on Cr Grain Boundary Composition Profile

Irradiation Dose Effects on Si Grain Boundary Composition Profile

Heat

316-2

8

12

GΒ

Radiation-enhanced and radiation-induced

Enhanced

Precipitates form because higher number of point defects under irradiation enhances transport and accelerates their formation

<u>They would form also under</u> <u>high T annealing</u> Precipitates form because continuous flux of point defects to sink increases local solute concentration, until solubility limit is locally exceeded

This would not happen without irradiation

Phases of precipitation Nucleation, Growth and Coarsening

(b)

(c)

(a)

Example of radiation-enhanced phenomena

Cu-rich precipitate formation in RPV steels

Cu-free Ni-Mn-rich precipitate formation in RPV steels: radiation-enhanced or radiation-induced?

Konobeev et al., JNM, 2006

Cr-rich precipitate formation in high-Cr steels

Summary: Nanostructural evolution under irradiation

Dislocation

Point defect evolution

Nucleation, growth and coarsening of dislocation loops

Nagai et al.,

Radiation induced segregation at sinks (grain boundaries, dislocations, ...)

Microchemical evolution

Nucleation, growth & coarsening of voids

Radiation enhanced/induced precipitation

How do we model these processes? Atomic-level modelling: Molecular dynamics

Molecular Dynamics

Principle

The classical equations of motion for a set of N atoms are timestepwise solved, using finite difference integration algorithms, so as to know atomic positions and velocities at each timestep:

$$m\frac{d^2\bar{r}_i}{dt^2} = -\nabla V(\bar{r}_1, \bar{r}_2, ..., \bar{r}_N) \quad \rightarrow \quad \{\bar{r}_i, \bar{v}_i / i = 1, ..., N\}$$

- From the knowledge of atomic positions and momenta all statistical mechanics magnitudes are directly accessible
- The <u>core of the method</u>, containing all the physics, is the <u>interatomic potential</u>, V(r_i), from which the interatomic forces are derived

Applications of MD for irradiation problems

- MD is the technique "par excellence" for displacement cascade simulations:
 - one atom is given kinetic energy
 - the dynamic evolution of the system is followed
- MD also allows stability and mobility of (fast enough) defects to be studied
- Finally, MD can be used to model the interaction between dislocations and defects

20 keV cascade (peak time) in Fe

Pros & Cons of MD

Advantages

- Wide applicability (bulk, surfaces, crystals, amorphous, liquids, ...)
- No analytical simplifications or approximations
- Treats spontaneously complex systems and phenomena at equilibrium or far from it, not accessible to analytical approaches

Limitations

- Evolution of the system calculated by timesteps of ~1 femtosecond
- Limited timescale (tens of nanoseconds, trade-off size/time)
- Limited volumes (up to 10⁷ atoms): not big enough for e.g. extended defects
- All the physics is contained in the interatomic potential

How do we model these processes beyond MD scale? Atomic-level modelling: Monte Carlo

Stochastic Monte Carlo Algorithms

- MD cannot deterministically reproduce the evolution of a system to equilibrium if the kinetics is slower than nanoseconds
- MC methods can be used for this purpose or more generally to extend the timespan of radiation damage simulations:
 - Metropolis Monte Carlo
 - Kinetic Monte Carlo
 - ✓ Atomistic KMC
 - ✓ Object KMC

The Monte Carlo Algorithm

> List of possible events: $e_i / i=1, ..., N_e$

> A probability P_i is associated to each event

 $\succ \Sigma_i P_i = 1$

Metropolis Monte Carlo

- > System of *N* atoms, defects can be included
- Total energy must be calculable, e.g. using an interatomic potential
- One trial event is chosen between:
 - atomic position exchange
 - small atomic displacement
 - global expansion or contraction
- > If E_{after} $E_{before} = \Delta E < 0$, the trial is accepted
- > If ΔE > 0, the trial is accepted with probability exp(- $\Delta E/kT$) < 1

(by extracting a random number, which can fall only in one out of two possible probability intervals)

Application of Metropolis MC

Study Cr redistribution in presence of a grain boundary: is segregation favoured or not?

Cr atoms only: {111}

Cr 2D distribution

Cr 3D distribution

Metropolis Monte Carlo

Advantages

- Phenomena such as segregation or precipitation, out of scope for MD, can be studied
 - ✓ (given a suitable hamiltonian and on the condition that these correspond to equilibrium states)
- All contributions to the free energy can be included in the calculation
 - Powerful tool to evaluate phase diagrams

Problems:

- Evolution does not involve physical mechanisms, only total energy
- Intermediate configurations are physically not meaningful
- No information is given about time necessary to reach equilibrium

Kinetic Monte Carlo

Kinetic \Rightarrow time is introduced !

Probabilities are calculated for physical transition mechanisms as Boltzmann factor frequencies :

$$\Gamma_i = \nu_i \exp\left(-\frac{E_{a,i}}{kT}\right)$$

After a certain event is chosen, time is in amount:

$$\Delta \tau = \frac{-\ln(rand)}{\sum_{i=1}^{N_e} \Gamma_i} = \frac{1}{\sum_{i=1}^{N_e} \Gamma_i}$$

Most physics (kinetics and thermodynamics) contained in the activation energies !

SCR. CEN

(residence time algorithm)

Kinetic Monte Carlo Families

Atoms (alloy) on rigid lattice Mainly vacancy jumps (SIA in 1st approx.)

Energy parameters from interatomic potentials or DFT

KMC residence time algorithm

"Objects" on *non-atomic* lattice (V, SIA, clusters, ...)

Many possible reactions between "objects"

Large set of parameters covering all possible reactions is needed

Example of application of AKMC: precipitation in FeCr

STUDIECENTRUM VOOR KERNENER CENTRE DÉTUDE DE L'ÉNERGIE NUCLÉ

Difference between AKMC and MMC

unknown

Final state

Time required is computed

AKMC: Pros & Cons

Advantages:

- Atomic-level method: can treat diffusion processes including proper atomic level mechanisms
- Can be extended to relatively long timescales (it depends on the problem), much longer than MD any way (seconds easily)

Limitations:

- Computationally expensive: the volumes that can be simulated remain fairly small
- At the moment, the treatment of SIA is only tentative

How do we model these processes to their full timescale? Nanostructure evolution models

Coarse-grained microstructure evolution models

\succ Coarse-grained \rightarrow no atoms

The "elements" or "grains" of the simulation are not atoms:

✓Defects (point-defects, clusters, precipitates) → nanostructure evolution models

✓ Dislocations → dislocation dynamics models

✓ Grain-boundaries \rightarrow texture models

Nanostructure evolution models for radiation damage are those that in principle allow direct comparison with experiments:

Rate theory

√...

Object kinetic Monte Carlo (and similar)

Nanostructure evolution models: **Rate Theory**

Mean-field approximation: \succ

> Defects are created, react and disappear at sinks everywhere at the same rate

- The same thing happens in each infinitesimal volume dV
- Different from periodic boundary
 - \checkmark dV \rightarrow 0 (infinitesimal)
 - There is no real simulation
 - Only variables are concentrations

Reaction

term

Nanostructure evolution models: Rate Theory

$$A + B \xleftarrow{k_{A+B}^{+}}{k_{C}^{-}} C \quad \frac{\partial C_{B}}{\partial t} = G_{B} + D_{B} \nabla^{2} C_{B} - \left(k_{A+B}^{+} C_{A} C_{B} - k_{C}^{-} C_{C}\right)$$

- N (10s to 100s) coupled differential equations of this type need to be written, one for each defect species
- The actual rate theory concerns the determination of the "rates" at which the reactions occur
 - E.g., through the theory of diffusion-limited reactions and based on mass-action law we know that:

$$k_{A+B}^{+} = 4\pi (r_A + r_B) (D_A + D_B)$$
 $k_C^{-} \propto k_{A+B}^{+} \exp \left(-\frac{E_b}{kT}\right)$

- Thus, given the source terms, the basic ingredients of nanostructure evolution models are
 - Diffusion coefficients
 - Capture radii
 - Binding energies

Nanostructure evolution models: Rate Theory – Pros & Cons

Advantages:

- Computationally cheap :
 - Sensitivity studies easily performed
 - Fitting of parameters to experiments is possible
 - Large fluences and volumes are no problem
 - Steady-state or simplified expressions can be analytically obtained
- Fully theoretical framework within which radiation effects can be addressed
 - It is not a "simulation"
 - Computer solves system of eqs.

Drawbacks:

- Random inhomogeneities and geometrical effects (e.g. coalescence) not taken into account
- Introduction of new mechanisms requires specific theoretical developments
- All acting mechanisms and parameters must be known
 - The model does not provide them, like e.g. MD
- Atomic-level configurations are not provided, either
 - As compared to e.g. AKMC

Nanostructure evolution models: Object kinetic Monte Carlo

Nanostructure evolution models: Object kinetic Monte Carlo

- Volume containing "objects" exists:
 - Point-defects and their clusters
 - Precipitates, solutes, …
 - Traps and localised sinks
 - Dislocations
 - 🐲 (Grain boundaries)
- Each "object" is defined by:
 - 🖙 Туре
 - (centre-of-mass) position
 - Migration parameters
 - Possible reactions
 - Reaction radius
- Events can be
 - Thermally activated → activation energy (migration, emission)
 - *External of known rate P_i (cascades, ...)*
 - Effect of geometry (recombination, trapping, clustering)

- As for the rate theory, the basic ingredients are
 - Diffusion coefficients
 - Capture radii

æ.

Binding energies

Nanostructure evolution models: Object kinetic Monte Carlo: Pros & Cons

Advantages:

- Flexibility in introducing objects, mechanisms and parameters, taken from any source of information (DFT, MD, AKMC, experiments, ...)
- No theoretical developments required for each new mechanism
- Spatial inhomogeneities and correlations (including sink strengths) are spontaneously accounted for
- Defects behave in a realistic way

Drawbacks:

- No atomic configurations
 - As compared to *atomistic* KMC
- All mechanisms and parameters must be known in advance
 - The model does not provide them, like MD does
- Computationally expensive
 - (as compared to rate theory)
 - Small volumes reduce statistical significance, especially for low densities
 - Fitting not possible; sensitivity studies possible, but at high cost

Part II: Mesoscopic scale and beyond

Dislocations and hardening

Dislocations

Edge type

Dislocation glide under shear is the most frequent mechanism whereby metals are <u>irreversibly deformed</u> (plastic deformation)

clear Materials

Dislocations

FIGURE 1-23. (a) Shear of a perfect crystal to form a mixed dislocation. (b) Projection normal to the glide plane in (a). (c) Resolution of (b) into components at point B.

From Hirth and Lothe, Theory of Dislocations

Dislocations, slip planes and deformation

Hardening = Yield strength increase

Why does the yield strength increase after irradiation?

Defect populations act as obstacles for dislocations There are different classes of obstacles ...

Shearable obstacles

Shearable obstacles

Shearable (weak) obstacles

Dislocations can cut through the obstacle: the bigger, the more difficult to cut it through

Elastic, chemical, and phase stability effects also play a role to determine obstacle strength

Increasing strain 'chops up' sheareable obstacles

Impenetrable obstacles

Impenetrable obstacles

Impenetrable obstacles

The bigger the spacing between obstacles, the easier for the dislocation to squeeze through the gaps.

Each 'bypass' event leaves a dislocation loop behind, narrowing the gaps and increasing hardening.

Prismatic loops are <u>*absorbable*</u> **obstacles**

This is a peculiar feature of irradiated materials

Take home messages

- Dislocations are defects that always exist in metals (and other materials) and make irreversible (plastic) deformation possible
 - This is why metals are ductile: they can deform before breaking

The yield strength is the stress to be applied to make dislocations move in a material

➤ The presence of defects (loops, voids, precipitates, ...) from irradiation makes dislocation glide more difficult → the yield strength increases, the material becomes <u>harder</u>

Dislocation dynamics

Dislocation dynamics: basics

In a DD model, a curved and continuum dislocation line is discretised as small segments, e.g. normal to each other (edge/screw)

To refine description, length of segments can be reduced (increase of computational time), or more than two species of segments, including slanted ones with mixed dislocation properties, can be included

Dislocation dynamics: basics

Elements of simulation are dislocation segments that are displaced according to the forces acting on them

Dislocation dynamics: basics

- Elasticity theory provides the background formulation
- Any mechanism that cannot be described in terms of elasticity must be introduced as <u>special local rule</u>
 - **o** e.g. pinning of dislocation by precipitate or radiation defect)

MD as tool to study dislocation/defect interaction

Edge dislocation interacting with SIA loop at 600 K

Dislocation Dynamics: pros & cons

Complex dislocation line patterns can be reasonably well predicted

Deformation of a fcc single crystal (Cu) of linear dimension $15 \mu m$. The stress tensile axis is [100], the imposed strain rate is 50 per second and the plastic strain reached at the end of this sequence is 0.1%.

Stress-strain curve for single crystal of defined material can be acceptably predicted for small deformations

Dislocation Dynamics: pros & cons

Possible to separate variables and identify mechanisms mainly responsible for given effects

Main limitations

- Computationally still very heavy
- No standardized approaches (such as in MD or KMC)
- Limited to single crystals
- No generalized method to introduce irradiation induced defects, though progresses are in course

Other models at higher scales based on FE (not described here)

Crystal plasticity

- Describes how aggregates (portions of polycrystals)
 behave mechanically, given crystalline constitutive laws
- Most immediate way to transfer dislocation dynamics results to finite elements

Homogenisation

Allows a single, average constitutive law to be obtained for an aggregate, to be used for larger scale calculations where grains and crystallography are not explicitly treated

Reference volume element scale calculations

- RVE is the biggest volume for which the homogenisation is possible without loosing too much information
- Component scale calculations
 - Those used for the design of components, as simple as possible

What is multiscale modelling?

Use of the proper experimental examination and modelling technique to study each phenomenon of interest <u>at the correct scale</u>

Combination of experimental and modelling techniques to describe phenomena <u>at different scales</u>

Intensive and extensive use of not only advanced theory and experimental techniques, but also, and especially, <u>computer simulation</u>

Radiation effects are inherently a multiscale problem

1 fs = 10^{-15} s 1-100 ps = 10^{-12} 10^{-10} s $ns = 10^{-9}$ s $ns = 10^{-3}$ s 1 s 10^{3} s

Time scale

Main open issues

>Atomistic simulations in multi-component systems

- Possible only with DFT, within size limits
- Interatomic potentials still challenging
- AKMC models possible by paying prices
- Treat in one model microchemical and nanostructural evolution
 - Difficult to treat self-interstitials in AKMC models
 - Difficult to treat chemical complexity in OKMC or RT models
- Bridge between MD and DD
 - Progresses made recently towards a standard approach to transfer information
 - Hampered by non unified standard for DD approaches
- Bridge between discrete and continuum models
 - Especially from DD to crystal plasticity

Take home messages

The multiscale modelling approach is based on the philosophy of using the right physical technique for the right scale and, if possible, combine them to provide a full physical description of an observed phenomenon

> A number of computer-based modelling techniques exist, e.g.:

- *Atomic-level: molecular dynamics, Metropolis MC, atomistic kinetic MC*
- Nanoscale: rate theory, object kinetic Monte Carlo
- *Microscale: dislocation dynamics*
- Larger scales: finite element methods (from crystal plasticity to component calculations)

The proper use of a multiscale modelling approach, including proper use of advanced experimental techniques, bears the promise to lead to the development of physics-based predictive models

The End

