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0.1 Problem #2

A shallow channel has V-shaped cross section with breadth 2a and depth hq at
the center , x = 0.

0.1.1 Modes across the channel

Show that the modes that flow back and forth across the channel (they are
uniform along the channel) have even or odd symmetry about = = 0.

0h(z,t) denotes surface fluctuations from hg. To get a wave equation, we
have to write down 2 equations - fluctuations in time and in space. Let’s begin
with time dependence and consider a region of fluid, which is really small in x
direction. Equation of continuity states that the amount of fluid flowing into
the region must be equal to the amount of fluid flowing out of the region. So
for V shaped channel we can write the equation:
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Notice that from here further on we consider only the region x < 0. The next
equation could be found from Euler equation for incompressible fluids:
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We are interested in wave movement in x direction only, because % ~ 0. So
for z component of the gradient we can write
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must hold. So, by multiplying Eq. (1) by % and Eq. (2) by %, we are able to
obtain a wave equation for dh:
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By substituting first term of Eq. (4) and Eq. (2) into the Eq. (3), the wave
equation gets the form:
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To solve the equation, we make a substituion z =1+ 2. So % = %:
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For steady state solution, 6h = H(z)cos(wt). By substituting this into the

equation:
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where ¢ = ghg. The manipulation results in
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where also k? = w?a?/cZ holds true. Basically this is a bessel equation in a form
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where g = +/p? — (32. For our case, the solution would be:
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As we are looking for even and odd solution at the point z = 0, we have to look
for solution Jy = 0 or % = 0 at the point z = 0. So for odd function we have
to find w values for Jy = 0 (denoted as argg) and for even function w values for
% = 0 (denoted as argd,). For that we have to solve correspondingly equations

arg{" = % and argd|"” = 2”6(&, where n = 1...6. The corresponding values

for Bessel function and w values are in Table 1.

0.2 Problem #2

Bounded oil/water. Find the dispersion relation for the waves on the interface
of 2 fluids. Fluid 1, density p;, resides 0 < z < hy above fluid 2, density ps > p1,
that resides in —hy < z < 0. Gravity is at work.



zeros of Jy zeros of J|) \ odd w values | even w values
args? = 2404 | argdl) =3.832 | 0@ =1.202% | oIV = 1.916%
argl” =5.520 | argd =7.016 | w® =276% [ =3.508%
argy) =8.654 | argdl? =10.174 | w® = 43272 | LY = 5.087%
argd?) =11.792 | argd(? =13.324 | w® = 58962 | W = 6.662%
argy) =14.931 | argdl?” = 16471 | w® = 74662 | w{” = 8.236%
argy) = 18.071 w® = 9.036%

Table 1: Zeros of Bessel function and its derivative. Notice that we could have
hidden the term <> into the variable k, but now it comes out really nicely how
the w is related to maximu depth and width of the water channel.

Surface profile for the half of the pond
0.4

Jo_1 - first node
J0_2 - second node
JO_3 - third node

uave

-0,3 - \
o 0.2 0.4 0.6 0.8 1
distance fron the x=0 to the one end of the pond

Figure 1: 3 modes of the surface profile for the case that Jy =0 at x = 0.



Surface profile for the half of the pond

0.4 T
Jo_1 - first node
J0_2 - second node
JO_3 - third node

0.3

0.2 -

uave

o 0.2 0.4 0.6 0.8 1
distance fron the x=0 to the one end of the pond.

Figure 2: 3 modes of the surface profile for the case that % =0at z=0.

For potential flow we can write for the surface of separation

dp1 092
PL90h + p1—= = pagdh + p2— (M

For ¢ we can look for a solution as was found in the class (for waves in general):

¢1 = A-cosh(kz—khy)cos (kx — wt) (8)
o2 B - cosh (kz + khs) cos (kx — wt) (9)

From the Eq. 7 we can find §h:
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Also as liquid is continuos, the following equations must hold true in the sepa-
ration layer:
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So the previous equation comes by multiplying by %:
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Lets substitute Equations (8) and (9) into the obtained quations (10) and (11):

A-k-sinh(kz—khy)g(p1 — p2) = —w?paB-cosh(kz+ khy) +w?p1 A - cosh (kz — khy)
—A-sinh(khy) = B -sinh(khy)

The latter equations is true for the case z = 0, so we’ll get:
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So we have found dispersion relation for layer of separation of two fluids.

0.2.1 Various limits

e po — p; Easy to see that dispersion relations relation approaches to 0.
Could be explained by the fact that there is now wave propagating in the
middle of fluid for that case.

e po > p1For example if p; is air. We'll get the well known relation for
the fluid with free surface: w? = k- g - tanh (khy). Also for really long
wavelength (khy < 1) the relation will be w? = ghsk?as found in class
also. Similarly for the opposite case the w? = gk.

e po K prActually we assumed that p > p; . But if it is not the case, then
the w? < 0. It could mean that this configuration is not stable for wave
propagation.

0.3 Problem #3

Find the Fourier transform of
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So the transform of the gaussian part of S (¢) (shifted to 0) would be:
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Now lets consider the sine term and constant multipliers also:
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which is the final form of the transform.

0.4 Problem #4

At t = 0, the displacement of a shallow water wave is
Sho(z) = Cexp (—2*/ (2W?)),

where W = 0.5 and C'is fixed by [ éh(z)dz = 1. Find the location and shape
of this disturbance at later times. Assume that the dispersion relation for water
waves is (the almost shallow case)

w = cok (1 —akQ),

where oo = 0.0001. The answer is basically
dk
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v

where
oh(k) = /dwéh(w)exp(fikx)

Basically the solution could be found taking inverse Fourier transform of the
equation

Oh(z,t) :/%5(k,t)exp(ikx)

where

Oh(k,t) = Sh(k)exp(—iw(k)t).

The tricky part is that after finding the FFT of for 0h(k) , we have to consider
how the components are placed in the array in MATLAB. So we cannot just
multiply by exp(—iw(k)t). For first half (and +1) of the array we can multiply
really as usually: component wise. But for second half of the array we have to
consider that there are complex conjugates in 0h(k) array and ordered vice versa.
So the second half of the array must also be multiplied by complex conjugates of
exponent term and also the component arrangement must be considered. The
results are commented in Figures:
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Figure 3: Wave shape at 3 different times. Notice the heavy wake behind the
wave. It is caused by the fact that initial wave was HALF gaussian, i.e. gaussian
located at the 0, but only positive x was considered. Due to the dispersion the
wave amplitude is also decreasing and the wake is increasing.
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Figure 4: The situation is same as in Figure 3. Only the « is negative this time.
Notice that wake is in the front of the wave.



Wave contours at timesteps Us, 1Us, 4Us, 1UUs
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Figure 5: Now we have shifted the gaussian to the right by -5. Notice that there
is not heavy wake behind because this kind of gaussian consists less harmonics,
so less dispersive also.
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Figure 6: Magnified Figure 5.



Wave contours at timestops 03, 103, 405, 1003
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Figure 7: The situation is same as in Figure 5. Only o < 0. So now the wake
is in the front of the wave.
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