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0.1 Problem #2

A shallow channel has V-shaped cross section with breadth 2a and depth h0 at
the center , x = 0.

0.1.1 Modes across the channel

Show that the modes that �ow back and forth across the channel (they are
uniform along the channel) have even or odd symmetry about x = 0.

δh(x, t) denotes surface �uctuations from h0. To get a wave equation, we
have to write down 2 equations - �uctuations in time and in space. Let's begin
with time dependence and consider a region of �uid, which is really small in x
direction. Equation of continuity states that the amount of �uid �owing into
the region must be equal to the amount of �uid �owing out of the region. So
for V shaped channel we can write the equation:

∂δh

∂t
+ h0

∂

∂x

((
1− |x|

a

)
v (x)

)
= 0,

∂δh

∂t
+ h0

v (x)
a

+ h0

(
1 +

x

a

) ∂v (x)
∂x

= 0. (1)

Notice that from here further on we consider only the region x < 0. The next
equation could be found from Euler equation for incompressible �uids:

∂v

∂t
= − 1

ρ0
∇P.

We are interested in wave movement in x direction only, because ∂vz

∂t ≈ 0. So
for z component of the gradient we can write

∂P

∂z
= ρ0g → P = P0 + ρ0g (δh (x)− z) .

For the vx the equation

∂vx

∂t
= − 1

ρ0
ρ0g

∂δh (x)
∂x

⇒ ∂vx

∂t
+ g

∂δh (x)
∂x

= 0 (2)

must hold. So, by multiplying Eq. (1) by ∂
∂t and Eq. (2) by ∂

∂x , we are able to
obtain a wave equation for δh:

∂2δh

∂t2
+ h0

[
1
a

∂v (x)
∂t

+
(
1 +

x

a

) ∂2v (x)
∂t∂x

]
= 0, (3)

∂v2
x

∂x∂t
+ g

∂2δh (x)
∂x2

= 0. (4)

By substituting �rst term of Eq. (4) and Eq. (2) into the Eq. (3), the wave
equation gets the form:

∂2δh

∂t2
− gh0

[
1
a

∂δh

∂x
+

(
1 +

x

a

) ∂2δh

∂x2

]
= 0. (5)
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To solve the equation, we make a substituion z = 1 + x
a . So

∂z
∂x = 1

a :

∂2δh

∂t2
− gh0

[
1
a2

∂δh

∂z
+ z

∂2δh

∂x2

]
= 0

For steady state solution, δh = H(z)cos(ωt). By substituting this into the
equation:

−ω2H − gh0

a2

(
∂H

∂z
+ z

∂2H

∂z2

)
= 0| ·

(
−za2

c2
0

)
,

where c2
0 = gh0. The manipulation results in

z2 ∂2H

∂z2
+ z

∂H

∂z
+

ω2a2

c2
0

zH = 0,

where also k2 = ω2a2/c2
0 holds true. Basically this is a bessel equation in a form

of:

x2 d2H

dx2
+ (2p + 1) x

dH

dx
+

(
α2x2r + β2

)
H = 0,

with a solution

H = x−p
[
C1Jq/r

(α

r
xr

)
+ C2Yq/r

(α

r
xr

)]
,

where q ≡
√

p2 − β2. For our case, the solution would be:

H = C1J0

(
2k
√

z
)

= C1J0

(
2ωa

c0

√(
1 +

x

a

))
. (6)

As we are looking for even and odd solution at the point x = 0, we have to look
for solution J0 = 0 or dJ0

dx = 0 at the point x = 0. So for odd function we have
to �nd ω values for J0 = 0 (denoted as arg0) and for even function ω values for
dJ0
dx = 0 (denoted as argd0). For that we have to solve correspondingly equations

arg
(n)
0 = 2ω(n)a

c0
and argd

(n)
0 = 2ω(n)a

c0
, where n = 1...6. The corresponding values

for Bessel function and ω values are in Table 1.

0.2 Problem #2

Bounded oil/water. Find the dispersion relation for the waves on the interface
of 2 �uids. Fluid 1, density ρ1, resides 0 ≤ z ≤ h1 above �uid 2, density ρ2 > ρ1,
that resides in −h1 ≤ z ≤ 0. Gravity is at work.
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zeros of J0 zeros of J ′0 odd ω values even ω values

arg
(1)
0 = 2.404 argd

(1)
0 = 3.832 ω(1) = 1.202 c0

a ω
(1)
d = 1.916 c0

a

arg
(2)
0 = 5.520 argd

(2)
0 = 7.016 ω(2) = 2.76 c0

a ω
(2)
d = 3.508 c0

a

arg
(3)
0 = 8.654 argd

(3)
0 = 10.174 ω(3) = 4.327 c0

a ω
(3)
d = 5.087 c0

a

arg
(4)
0 = 11.792 argd

(4)
0 = 13.324 ω(4) = 5.896 c0

a ω
(4)
d = 6.662 c0

a

arg
(5)
0 = 14.931 argd

(5)
0 = 16.471 ω(5) = 7.466 c0

a ω
(5)
d = 8.236 c0

a

arg
(6)
0 = 18.071 ω(6) = 9.036 c0

a

Table 1: Zeros of Bessel function and its derivative. Notice that we could have
hidden the term c0

a into the variable k, but now it comes out really nicely how
the ω is related to maximu depth and width of the water channel.

Figure 1: 3 modes of the surface pro�le for the case that J0 = 0 at x = 0.
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Figure 2: 3 modes of the surface pro�le for the case that dJ0
dx = 0 at x = 0.

For potential �ow we can write for the surface of separation

ρ1gδh + ρ1
∂φ1

∂t
= ρ2gδh + ρ2

∂φ2

∂t
(7)

For φ we can look for a solution as was found in the class (for waves in general):

φ1 = A · cosh (kz − kh1) cos (kx− ωt) (8)

φ2 = B · cosh (kz + kh2) cos (kx− ωt) (9)

From the Eq. 7 we can �nd δh:

δh =
1

g (ρ1 − ρ2)

(
ρ2

∂φ2

∂t
− ρ1

∂φ1

∂t

)
.

Also as liquid is continuos, the following equations must hold true in the sepa-
ration layer:

∂φ1

∂z
=

∂φ2

∂z
(10)

vz =
∂φ1

∂z
=

∂δh

∂t

So the previous equation comes by multiplying by ∂
∂t :

∂φ1

∂z
g (ρ1 − ρ2) = ρ2

∂2φ2

∂t2
− ρ1

∂2φ1

∂t2
(11)
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Lets substitute Equations (8) and (9) into the obtained quations (10) and (11):

A · k · sinh (kz − kh1) g (ρ1 − ρ2) = −ω2ρ2B · cosh (kz + kh2) + ω2ρ1A · cosh (kz − kh1)
−A · sinh (kh1) = B · sinh (kh2)

The latter equations is true for the case z = 0, so we'll get:

B = −A · sinh (kh1)
sinh (kh2)

−k · sinh (kh1) g (ρ1 − ρ2) = ω2ρ2
sinh (kh1)
sinh (kh2)

· cosh (kh2) + ω2ρ1cosh (kh1)

ω2 =
−k · sinh (kh1) g (ρ1 − ρ2)

ρ1cosh (kh1) + ρ2 · sinh (kh1) · coth (kh2)

ω2 =
k · g (ρ2 − ρ1)

ρ1coth (kh1) + ρ2 · coth (kh2)
.

So we have found dispersion relation for layer of separation of two �uids.

0.2.1 Various limits

• ρ2 → ρ1 Easy to see that dispersion relations relation approaches to 0.
Could be explained by the fact that there is now wave propagating in the
middle of �uid for that case.

• ρ2 � ρ1For example if ρ1 is air. We'll get the well known relation for
the �uid with free surface: ω2 = k · g · tanh (kh2). Also for really long
wavelength (kh2 � 1) the relation will be ω2 = gh2k

2as found in class
also. Similarly for the opposite case the ω2 = gk.

• ρ2 � ρ1Actually we assumed that ρ2 > ρ1 . But if it is not the case, then
the ω2 < 0. It could mean that this con�guration is not stable for wave
propagation.

0.3 Problem #3

Find the Fourier transform of

S (t; t0,∆t, Ω) = S(0)
1√

2π (∆t)2
e
− 1

2
(t−t0)2

(∆t)2 sinΩ (t− t0)

It is good to consider following useful relations for �nding the transform:

• g (t− a) ⇒ e−iaωG (ω)

• f (t) sin (Ωt) ⇒ i
2 (F (ω + Ω)− F (ω − Ω))

• e−αt2 ⇒ 1√
2α

e−
ω2
4α
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So the transform of the gaussian part of S (t) (shifted to 0) would be:

F

(
e
− 1

2
t2

(∆t)2

)
=

√
(∆t)2e−

ω2
2 (∆t)2

Now lets consider the sine term and constant multipliers also:

S0 (ω) = S (0)
i

2
√

2π

(
e−

(ω+Ω)2

2 (∆t)2 − e−
(ω−Ω)2

2 (∆t)2
)

Now let's shift the result also by t0:

S (ω) = S (0)
i · e−it0ω

2
√

2π

(
e−

(ω+Ω)2

2 (∆t)2 − e−
(ω−Ω)2

2 (∆t)2
)

,

which is the �nal form of the transform.

0.4 Problem #4

At t = 0, the displacement of a shallow water wave is

δh0(x) = Cexp
(
−x2/

(
2W 2

))
,

where W = 0.5 and C is �xed by
∫

δh(x)dx = 1. Find the location and shape
of this disturbance at later times. Assume that the dispersion relation for water
waves is (the almost shallow case)

ω = c0k
(
1− αk2

)
,

where α = 0.0001. The answer is basically

δh(x, t) =
∫

dk

2π
δh(k)exp(i(kx− ω(k)t)

where

δh(k) =
∫

dxδh(x)exp(−ikx)

Basically the solution could be found taking inverse Fourier transform of the
equation

δh(x, t) =
∫

dk

2π
δ(k, t)exp(ikx)

where
δh(k, t) = δh(k)exp(−iω(k)t).

The tricky part is that after �nding the FFT of for δh(k) , we have to consider
how the components are placed in the array in MATLAB. So we cannot just
multiply by exp(−iω(k)t). For �rst half (and +1) of the array we can multiply
really as usually: component wise. But for second half of the array we have to
consider that there are complex conjugates in δh(k) array and ordered vice versa.
So the second half of the array must also be multiplied by complex conjugates of
exponent term and also the component arrangement must be considered. The
results are commented in Figures:
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Figure 3: Wave shape at 3 di�erent times. Notice the heavy wake behind the
wave. It is caused by the fact that initial wave was HALF gaussian, i.e. gaussian
located at the 0, but only positive x was considered. Due to the dispersion the
wave amplitude is also decreasing and the wake is increasing.
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Figure 4: The situation is same as in Figure 3. Only the α is negative this time.
Notice that wake is in the front of the wave.
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Figure 5: Now we have shifted the gaussian to the right by -5. Notice that there
is not heavy wake behind because this kind of gaussian consists less harmonics,
so less dispersive also.

Figure 6: Magni�ed Figure 5.
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Figure 7: The situation is same as in Figure 5. Only α < 0. So now the wake
is in the front of the wave.
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