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Waves II: Dispersion and Nonlinearity.

1. Review. We will use water waves as an example (water because this is really an example

of a class of systems characterized by the free surface of the fluid; a well known other example

is the third sound mode of a superfluid thin film.)

2. Shallow water. The back of the envelope argument gave

∂δh

∂t
+ h0∇ · v = 0 (1)

and
∂v

∂t
= −g∇δh (2)

which combine to
∂2δh

∂t2
= gh0∇2δh (3)

from which we get the speed of a tsunami

c20 = gh0. (4)

3. Deep water. In the deep water case we gave a more formal treatment of the fluid.

∇2φ = 0, (5)

n · v = 0, z = −h0, (6)

∂φ̂

∂z
= −1

g

∂2φ̂

∂t2
, z = 0. (7)

Solution to this system of equations leads to

φ(x, z, t) = A0 coshk(h0 − z) cos(kx) cos(ωt) (8)

and the dispersion relation

ω2 = gk tanh kh0. (9)
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From Eq. (9) we have

1. shallow water, kh0 � 1,

ω2 = gh0k
2 = c20k

2. (10)

2. almost shallow water, kh0 < 1,

ω2 = c20

(
1− 1

3
(kh0)

2 + · · ·
)
k2 (11)

3. deep water, kh0 � 1,

ω2 = gk. (12)

We will return to case 2 below, almost shallow.

4. Dispersion relations and Fourier analysis. From Eq. (11) we have two forms of the

dispersion relation (for almost shallow water)

ω(k) = c0k
(
1− 1

6
(kh0)

2 + · · ·
)

(13)

or equivalently

k(ω) =
ω

c0

1 +
1

6

(
ωh0

c0

)2

+ · · ·

 . (14)

Note that both ω and k can change sign and that k(−ω) = −k(ω) and ω(−k) = −ω(k).

Dispersion relations of this type are often encountered in the Fourier treatment of a linear

system. In general you may have Fourier representation of f(x, t) in the form

f(x, t) =
∫ dk

2π

∫ dω

2π
A(k, ω)ei(kx−ωt), (15)

where the limits on k and ω are ±∞ and factors of 2π are here. The inverse transforms

have no factors of 2π. When you have a dispersion relation you are able to write either

A(k, ω) = A(ω)2πδ(k − k(ω)) (16)

or

A(k, ω) = A(k)2πδ(ω − ω(k)). (17)

1. If you are doing signal processing you are likely to prefer featuring ω, Eq. (16).
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2. If f(x, t) is a real function then

A(−ω) = A(ω)∗, (18)

A(−k) = A(k)∗. (19)

3. If the dispersion relation has no dispersion, ω = c0k, then

f(x, t) =
∫ dω

2π
A(ω)e−iω(t−c−1

0 x) = f(x− c0t). (20)

5. Practical Fourier Analysis. Fast Fourier Transform = FFT. [James W. Cooley and John

W. Tukey, ”An algorithm for the machine calculation of complex Fourier series,” Math.

Comput. 19, 297 - 301 (1965).] Since the invention of the FFT algorithm Fourier transforms

have become a very important tool in numerical analysis. Fast is the point. Let us use k

as example. The real line 0 < x < +L is covered by N points. (Unless it cannot be helped

there is no point in having N not be a power of 2.) The set of N space points are

xn = (n− 1)∆x, ∆x = L/N, n = 1 · · ·N. (21)

Corresponding to these are N values of the wavevector

km = 2π(m− 1)
1

N∆x
, m = 1 · · ·N. (22)

For the function f(x) defined at the N space points, i.e., f(xn) = fn, n = 1 · · ·N , the value

of the Fourier transform at wavevector km is

Fm = F (km) =
N∑

n=1

fn e
−i2π(m−1)(n−1)/N . (23)

If the Fourier transform of a function defined at the points x1 · · ·xn is known, i.e., all of the

numbers (typically complex) F1 · · ·FN are known, then the function of x corresponding to

this Fourier transform is given by the inverse transform

fn = f(xn) =
1

N

N∑
n=1

Fm ei2π(n−1)(m−1)/N . (24)

Usually, in Mathematica, Matlab, Mathcad, Maple, ... there are intrinsic functions that

do the calculations above. You need only supply as input the set of values of f(x), i.e.,

f1 · · · fN , to use Eq. (23) and the set of values of F (k), i.e., F1 · · ·FN , to use Eq. (24). There
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1 2 3 N-1 N

Δx

0 +L

xn =  Δx*(n-1) ,  Δx = L / N , n = 1 ... N

km = 2 π *(m-1) / (N*Δx) , m = 1 ... N

km * xn =  2 π *(m-1)*(n-1) /N

space

k - space

space

FIG. 1: x-space and k-space.

are also many standard manipulations of the elements in Fourier analysis in these numerical

packages.

Sometimes you want to do something that nobody thought of before. Or you are ornary and

just want to do it yourself. Then it is important to know how the computer stores Fourier

components; you may want to pick them up and manipulate them. This is a don’t ask

situation. The N numbers f1 · · · fN are stored as a (column) vector as shown at the top of

Fig. 2, i.e., from 1 to N . The component f1 corresponds to k1 = 0 and the component f1+N/2

corresponds to k1+N/2 = π. All other Fourier components (for a real function) come in pairs

with fN−1 = f ∗2 , fN−2 = f ∗3 , etc. The components f2 (f3, f4, · · ·)and fN−1 (fN−2, fN−3, · · ·)

are corresponding long wavelength components of the Fourier representation of a function.

The components fN/2 (fN/2−1, · · ·)and f2+N/2 (f3+N/2, · · ·) are corresponding short wavelength
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k(N) = k(1)*
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k - space:  location of Fourier coefficients in memory

k - space:  re-arranged

FIG. 2: Storage locations for FFT.

components of the Fourier representation of a function. They are usually thought of in the

re-arranged form of k − space at the bottom of Fig. 2. The question of where the Fourier

components are located comes up for example when you might want to smooth a function

(by removing the short wavelength components) or high pass filter a function by removing

the long wavelength components. If you want to continue to have the function be real you

have to take Fourier components away pairwise.

Nonlinearity. We will derive 2 (possibly more) nonlinear wave equations. For starters lets

just look at a few such equations.

1. In the interior of a fluid (i.e., a fluid with no or unimportant free surface)

∂2p

∂t2
− c20

∂2p

∂x2
= − β

ρ0c40

∂2

∂t2
p2, (25)
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where ρ0 and c0 are the density and sound velocity respectively and β is a parameter

that measures the strength of the nonlinearity.

2. Korteweg-deVries equation (for almost shallow water waves)

∂u

∂t
− c0

∂u

∂x
+ β

∂3u

∂x3
+
α

2

∂u2

∂x
= 0, (26)

where β is a measure of dispersion and α is a measure of nonlinearity. This is a one

way wave equation.

3. The nonlinear Schroedinger equation (often encountered in the discussion of dilute

bose gases and BEC)

− h̄2

2m

∂2ψ

∂x2
− α|ψ|2ψ = Eψ. (27)

4. The φ4 equation (encountered in a description of the order parameter and phase tran-

sitions)
∂2ψ

∂x2
= αψ − βψ3. (28)

5. The sine-Gordon equation (encountered in a description of quantum fields, in a de-

scription of the order parameter in superfluid 3He)

∂2ψ

∂t2
− c20

∂2ψ

∂x2
= A sinψ. (29)

Some of these equations are very similar to other of them. So while they describe different

physical situations there is often a common mathematical scheme that can provide the

solution. On the other hand be forewarned for nonlinear problems there is a dearth of

methods for solution compared to linear problems.

A simplification of the φ4 equation.

1. Divide by α and define z =
√
αx and γ = β/α

∂2ψ

∂z2
= ψ − γψ3. (30)

2. Define φ = λψ, where λ is a constant. Substitute and find that for λ2 = γ−1

∂2φ

∂z2
= φ− φ3. (31)
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A manipulation of the sine-Gordon equation.

1. Look for solution of the form ψ = φ(ζ) with ζ = x− vt. Then

∂2ψ

∂t2
− c20

∂2ψ

∂x2
= (v2 − c20)

∂2φ

∂ζ2
. (32)

2. Define z = ζ
√
A/(c20 − v2) and find

∂2φ

∂z2
= − sinφ = −φ+

1

3!
φ3 + · · · , (33)

which is suspiciously like Eq. (31).

Solution to a nonlinear equation. Here is an illustration of a method of solution to

the sine-Gordon equation in the approximation of Eq. (33). Before we start let’s collect the

ingredients

1. the equation
∂2ψ

∂t2
− c20

∂2ψ

∂x2
= A sinψ, (34)

2. look for solution in the form φ(ζ = x− vt),

3. use variable z = ζ
√
A/(c20 − v2),

4. keep only the first two terms in sinφ,

5. scale φ by λ = 1/
√

3!, φ = λX

To solve

Ẍ = −X +X3, (35)

where Ẋ stands for dX/dz, multiply the equation by Ẋ and re-write

ẊẌ = −ẊX + ẊX3 ↔ d

dz

Ẋ2

2
=

d

dz

(
−X

2

2
+
X4

4

)
. (36)

Integration yields
Ẋ2

2
= E − X2

2
+
X4

4
= E − V (X), (37)

where E is a constant of integration. Using the correspondence between this equation and
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FIG. 3: Solution to the φ4 equation by quadrature uses the correspondance of Eq. (37) to classical

mechanics, T = E − V .

the energy picture in classical mechanics, Fig. 3, suggests that a particularly simple solution

(certainly not the only solution) would follow from the choice E = max(V (X)) = 1/4. Then

Ẋ =
1√
2
(1−X2). (38)

Re-arrange
dX

1−X2
=

1√
2
dz (39)

and find

X = tanh
z√
2
. (40)

Now work back through the definitions to find ψ

φ(x− vt) =
√

3! tanh
κ(x− vt)√

1− β2
, (41)
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FIG. 4: Lorentz contraction of ”kink” soliton.

where κ =
√
A/2/c0 and β = v/c0. This solution is a ”’kink” that undergoes Lorentz

contraction becoming a step at v → c0..

Aside. Model for a sine-Gordon like equation. A sine Gordon like equation describes

a set of similar pendulums in gravity that are tied to a torsion fiber. The single particle

force is sinθ. The force due to twisting the torsion fiber is the the second difference

ftorsion = τ(θn+1 − θn)− τ(θn − θn−1)→ τa2 ∂
2θ

∂x2
, (42)

where a is the spacing between pendulums along the torsion fiber.
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FIG. 5: Lorentz contraction of ”kink” soliton.

Derive the Korteweg-deVries equation. This is going to be hard work. We want

to consider water waves that are almost shallow. This means that we keep track of the

importance of two small quantities, the amplitude of the disturbance, ζ, and kh0, the ratio

of the fluid depth to the wavelength of the disturbance. When ζ → 0 and kh0 → 0 we have

Eqs. (1)-(4). A mild correction from this extreme is embodied in Eqs. (5)-(7). It is clear

from the dispersion relation in Eq. (9) contains higher order terms in kh0. We want to get

at these terms in a systematic way. To start recall that the bounday conditions that were

imposed on solution to Eq. (5) came from Bernoulli, which we linearized, and from z = ζ.

The Bernoulli equation, with the term nonlinear in v re-inserted, is

−∂φ
∂t

+
1

2
∇φ · ∇φ+ gζ = 0. (43)
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From z = ζ we have
dz

dt
= vz =

∂φ

∂z
=
dζ

dt
=
∂ζ

∂t
+∇φ · ∇ζ, (44)

or
∂φ

∂z
=
∂ζ

∂t
+∇φ · ∇ζ, (45)

When the nonlinear terms are dropped from Eqs. (43) and (45) we get Eq. (7).

To discover how kh0 and ζ appear in φ consider a general disturbance of the fluid represented

as a superposition of ”plane waves” at z = ζ

φ(x, ζ, t) =
∫

dk cosh k(h0 − ζ) eikxA(k, t). (46)

Develop in Taylor series

φ(x, ζ, t) =
∫

dk
(
1 +

1

2!
(k(h0 − ζ))2

)
eikxA(k, t), (47)

=
∫

dk
(
1 +

1

2!
[h2

0 − 2hoζ + ζ2]k2
)
eikxA(k, t), (48)

=
∫

dk

(
1− 1

2!
[h2

0 − 2hoζ + ζ2]
∂2

∂x2

)
eikxA(k, t), (49)

=

(
1− 1

2!
[h2

0 − 2hoζ + ζ2]
∂2

∂x2

)
A(x, t), (50)

where

A(x, t) =
∫

dk eikxA(k, t). (51)

Similarly

∂φ

∂z
= −

∫
dk k sinh k(h0 − ζ) eikxA(k, t), (52)

= −
∫

dk k
(
k(h0 − ζ) +

1

3!
[k(h0 − ζ)]3

)
eikxA(k, t), (53)

= (h0 − ζ)
∂2A(x, t)

∂x2
− 1

3!
(h0 − ζ)3∂

4A(x, t)

∂x4
(54)

When these expansions for φ and ∂φ/∂z are used in Eqs. (43) and (45) we obtain

gζ − ∂A

∂t
+
h2

0

2

∂3A

∂t∂x2
+

1

2

(
∂A

∂x

)2

= 0 (55)

and
∂ζ

∂t
= h0

∂2A

∂x2
− 1

6
h3

0

∂4A

∂x4
− ζ

∂2A

∂x2
− ∂A

∂x

∂ζ

∂x
. (56)
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1. The last term in Eq. (55) is nonlinear.

2. The last two terms in Eq. (56) are nonlinear.

3. Test these equations when the nonlinear terms are dropped. Write ζ = Zexp i(kx−ωt)

and A = Bexp i(kx− ωt) and find

−gZ = iω

(
1− k2h2

0

2

)
B, (57)

−iωZ = −h0k
2

(
1− k2h2

0

6

)
B. (58)

These can be solved for ω2 in agreement with the result in Eq. (11). The higher

derivative terms in Eqs. (55) and (56) are a manifestation of dispersion.

Look for solutions to Eqs. (55) and (56) that are functions of η = x− vt. Then we have

0 = gζ + vA
′ − vh2

0

2
A

′′′
+

1

2
(A

′
)2, (59)

0 = vζ
′
+ h0A

′′ − h3
0

6
A

′′′′ − ζA
′′ − A

′
ζ
′
, (60)

where y
′
= dy/dη. The second of these two equations is an exact derivative

A
′
= − v

h0

ζ +
h2

0

6
A

′′′
+

1

h0

ζA
′
+ constant. (61)

We use A
′
in the first equation to find(

1− gh0

v2

)
ζ − 3

2h0

ζ2 − h2
0

3
ζ
′′

= 0. (62)

This is one form of the KdV equation. To compare directly with Eq. (26), another form,

use u = u(x+ vt) in Eq. (26) and remove one derivative from all terms.
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