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THE PROBLEM:  
NUCLEI AND ELECTRONS INTERACTING VIA COULOMB FORCES 

 Hamiltonian of the universe 
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 Schrödinger equation: 

  r={ri }  i=1,...,N 

  R={RI }  I=1,...,P 

 



ADIABATIC APPROXIMATION 

 Adiabatic expansion: 

 

 Electronic Hamiltonian: 

 

 Electronic Schrödinger equation: 

 

 Replacing into TD-Schrödinger: 
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d= Non-adiabatic couplings 

Describe non-radiative transitions 

originated in the nuclear motion 



ADIABATIC APPROXIMATION 

 Condition for adiabaticity: 

 

 v = frequency of rotation of the electronic wave function due to 

nuclear motion 
 

 For m/M~5x10-4 (proton), vibrational energies (ћv~0.01 eV) are 

two orders of magnitude smaller than electronic excitation 

energies (E~1 eV)  

Adiabatic electronic eigenstates do not mix 

 
 

 does not change in time, e.g. =0 (Ground State) 
 

 Adiabatic Schrödinger equation: 
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ADIABATIC APPROXIMATION 

 Time scale associated to the motion of the nuclei much slower 
than that of electrons → Electrons follow instantaneously the 
nuclear motion, without changing electronic eigenstate. 

 

 Non-adiabaticity: along the dynamical evolution, two (or more) 
electronic levels can get very close, so that E ћv , and the 
adiabatic approximation breaks down. 
 

 

 

 

 

 

 

 
 

 This can also happen because nuclear motion is very fast, 
e.g. swift ions.  
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CLASSICAL NUCLEI APPROXIMATION 

 At room T: T  0.1 Å 

 No phase coherence beyond 

 
 

 Nuclear wave function can be approximated as a Hartree product: 

 

 
 

 Nuclei are generally quite well localized. The larger the mass, the 

better localized they are   

Nuclei can be considered classical particles 

 

 Ehrenfest theorem: 

 

 

 

 

~ 1 Å 

~ 0.1 Å 


I

c

II tt );,();( )(
RRR  

  I

I

II

I

I

I

dt

d
M

M

i
H

dt

d
i P

R
PR

R



 ,

  )(, RP
P

EiH
dt

d
i II

I
 

XC energy density of the HEG 



CLASSICAL NUCLEI APPROXIMATION 

 Leads to Newton-like equations: 

 

1. Nuclear wave function approximated as a product of -functions, 

centred at the classical position: RI
(c)(t) 

 
 

 

2. Expectation value of the force approximated as the gradient of 

the potential energy surface (PES) at the classical position 

 
 

 

Strictly valid only for -functions or harmonic potentials 

 

 In some situations, e.g. spontaneous phonon emission, 

electronic transitions require quantum nuclei (A. Fisher) 
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SUMMARY 

 This leads to: 

 

 and: 

 

 

 Both, geometry optimization and first-principles MD require the 

solution of the time-independent Schrödinger equation for 

a system of N interacting electrons in the external 

Coulomb field of the nuclei 

 

 

 

Electronic structure 

A quantum many-body problem 
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First-principles (quantum) 

Molecular Dynamics 

Geometry optimization 



PHYSICAL ORIGIN OF MANY-BODY EFFECTS:  

CORRELATION 

 Electrochemical cell: charge in the electrodes depends on the 

potential difference (Gouy-Chapman, 1901-1913) 

 

 Two concepts 

1. Screening length 

2. Plasma frequency 
 

 Many-body: electrons interact with each other 
 

 Electrostatic potential generated by electrons verifies Poisson’s 

equation: 

 

 

 

 Pair correlation function: 
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Exclusion zone 

 ]1)([)(4)( 22  rrr gneVH 

 

 Poisson’s equation: 

 

 

 

 

 

 

 

 

The presence of an electron discourages the other electrons 

from approaching it: CORRELATION 
 

 g(r) is the probability of finding two electrons at a distance r.  

 

 

 

 

 

 

PHYSICAL ORIGIN OF MANY-BODY EFFECTS:  

CORRELATION 



 

 Classical liquid (Boltzmann):  

 

 Linearizing:  

 

 Replacing g(r) into Poisson’s equation   linearized Poisson-

Boltzmann: 

 

 

 

 Screened Coulomb interaction: 

 

 

 Debye-Hückel screening length: 

 

 

PHYSICAL ORIGIN OF MANY-BODY EFFECTS:  

CORRELATION 
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Test charge q 

Displaced charge n(r) 

 

 Quantum (electron) liquid: 
 

 Electric field interacts with q  

 

 

 
 

 If q is just one electron amongst the others, then it is not a test 

charge anymore, and will displace some charge n(r) [static 

screening charge] to make space for itself. 
 

 Electron-electron interaction: 

 

 

PHYSICAL ORIGIN OF QUANTUM MANY-

BODY EFFECTS: SCREENING 
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 Replacing into Schrödinger equation: 

 

 

 

 

 

 

 

 Pauli principle:                                         (self-consistency) 

 
 

1. Fermi-Dirac statistics  Exchange (statistical correlation) 

2. Non-statistical correlations 
1. Static: electrons spatially separated (multi-configuration, left-right) 

2. Dynamic: fluctuations in electronic density (Van der Waals) 

 

 

PHYSICAL ORIGIN OF QUANTUM MANY-

BODY EFFECTS: SCREENING 
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Classical electrostatics 
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 Random Phase Approximation (RPA): 

 

 

 

 Dielectric function (in reciprocal space): 

 

 

 In the RPA (Lindhard):  

 

 

1. Thomas-Fermi (small k) 

 

2. k→2kF: Friedel oscillations at long distance  

 

 

 

 

THE HOMOGENEOUS ELECTRON GAS (HEG)  

(JELLIUM) 
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 Many-electron problem: 
 

 

 Hartree product (uncorrelated):  

 

 Replacing into Schrödinger’s equation: 

 

 

 

 

WAVEFUNCTION APPROACHES IN  

QUANTUM CHEMISTRY 
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 Hartree-Fock  (Exchange only): Slater determinant 

 

 

 

 

 

 

 Hartree-Fock equations: 

 

 

 

 

WAVEFUNCTION APPROACHES: 

HARTREE-FOCK 
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Direct Coulomb Exchange 

Self-interaction free, no correlation 



 

 Total energy: 

 

 

 

 

 

 

 

 To introduce Static and Dynamical Correlation: 

1. Møller-Plesset perturbation theory on HF wave function: MP2, 

MP4, Coupled-clusters (re-summation to ∞ order): CCSD(T) 

2. Configuration interaction (CI): 

CISD(T) 

3. Multi-reference methods: CASSCF, CASMP2, MR-CI  

 

 

 

 

WAVEFUNCTION APPROACHES: 

HARTREE-FOCK AND BEYOND 

Coulomb integrals Exchange integrals 
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 Electron-electron interaction: 

 

 

 

 

 Total energy: 

 

 

 

 

 External: 

 

 Kinetic: 

 

 

 

 

 

 

 

 

 

 

 

ELECTRON-ELECTRON INTERACTION: 

GENERAL 

Direct Coulomb (Hartree) Pair correlation function 
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Functional minimization 

 

 Thomas-Fermi (1927): Approximation for the kinetic energy 

from the homogeneous electron gas. 

 

 

 

 

 Minimizing the functional with respect to (r), under the 

constraint that (r) integrates to N, we obtain an integral 

equation for (r): 

 

 

 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

THE ANCESTORS 
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 Hohenberg-Kohn theorem (1964): Two external local 

potentials differing only in an additive constant, correspond to the 

same electronic density 

 

 V-representability (Levy 1982): Not any density is allowed. It 

must arise from some external potential  constrained search 

 

 Minimum principle:                                                   is minimum 

for GS = ground state density. 

 

 Variational equations: 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

MODERN THEORY 
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A universal functional  

(depends only on the interaction) 



 

 HK theorem is valid for any e-e interaction U, including the full 

Coulomb interaction, and also U=0, corresponding to non-

interacting electrons. 
 

 Non-interacting reference system (R): a system of non-

interacting electrons, i.e. UR=0,  with the same density  of the 

system of interacting electrons (U=Vee). 

 

 
 

 The reference orbitals correspond to non-interacting electrons. 

Therefore, they are solutions of the Schrödinger equation in 

an effective, reference “external” potential VR[](r): 

 

DENSITY FUNCTIONAL THEORY (DFT): 

NON-INTERACTING REFERENCE SYSTEM 
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 The reference orbitals n
R(r) are implicit functionals of the 

electronic density.  
 

 Energy of non-interacting electrons: 

 

 

 Non-interacting kinetic energy known explicitly: 

 

 

 

 Any functional of the reference orbitals is, implicitly, a 

functional of the electronic density via the mapping: 

DENSITY FUNCTIONAL THEORY (DFT): 

NON-INTERACTING REFERENCE SYSTEM 
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 For the interacting system, define the Exchange-Correlation 

functional as: 

 

 

 Which is different (TR[] ≠ T[] ) from 

 

 

 

 The HK variational energy functional is, then: 

 

 

 

 Thomas-Fermi methods approximate also TR[] 

 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

EXCHANGE-CORRELATION 
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Fast, but not very accurate 



 

 Kohn-Sham (1965): Use exact kinetic functional for reference 

orbitals and approximate EXC[] 
 

 Minimizing Ev[] with respect to : 

 

 

 
 

 With the exchange-correlation potential defined as: 

 

 Using the relation (always valid): 

 

 We find that the reference potential coincides with the Kohn-

Sham potential 

DENSITY FUNCTIONAL THEORY (DFT): 

KOHN-SHAM METHODS 
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 Kohn-Sham equations: 

 

 

 

 

 

 

 where interacting and Kohn-Sham electronic densities are 

enforced to be equal 
 

 This leads to a partial differential equation that has to be solved 

self-consistently, as the KS potential depends on the 

density, which is constructed with the solutions of the KS 

equations. 

DENSITY FUNCTIONAL THEORY (DFT): 

KOHN-SHAM EQUATIONS 
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 Observations regarding Kohn-Sham equations: 

1. The true interacting many-body wave function is not a Slater 

determinant of the KS orbitals. 
 

2. The electronic density constructed with the KS orbitals is, by 

construction, the same as that from the true wave function. 
 

3. EXC[] must contain kinetic correlations absent in TR[] 
 

4. The non-interacting reference systems does not necessarily exist 

with integer occupations of the KS orbitals. This is cured by 

extending the domain of definition of occupation numbers 

{fn} to any real number between 0 and 1. 
 

5. Janak’s theorem (I=-=-max) is valid. 
 

6. Koopman’s theorem (E=E(N+1)-E(N)≠ N+1 -N) is not valid, but 

Slater’s SCF method works out very nicely. 

DENSITY FUNCTIONAL THEORY (DFT): 

KOHN-SHAM EQUATIONS 
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 How to obtain EXC that includes kinetic correlations? 
 

 Start from the non-interacting systems and switch gradually the 

Coulomb interaction, always maintaining the same density 

 

 

 

 

 

 

 

 

 In practice, EXC is obtained as the difference: 
 

 Exchange: no -average 

 

 

 

 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

ADIABATIC CONNECTION 
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Taken from “exact” QMC calculations 



 Coupling constant averaged pair correlation function: 

 

 

 Exchange-correlation hole: 

 

 

 Sum rules:  

 Exchange hole contains one missing electron  

 Correlation hole integrates to 0 

 Symmetry:  

 Normalization 

 Should cancel self-interaction 

 

 

 

 

 

DENSITY FUNCTIONAL THEORY (DFT): 

EXCHANGE-CORRELATION HOLE 

)',(~)',()',(~ rrrrrr CXXC ggg 

 
 '

|'|

)',(~)(

2

1
][ rr

rr

rrr
ddE XC

XC




   1)',(~)'()',()'()',(~  rrrrrrrr CXXC gg 

),'(~)',(~ rrrr gg 

Hartree 

HF 

Exact 



 

 The inhomogeneous electron gas is considered as locally 

homogeneous: 

 

 

 

 

 

 

 

 

 LDA XC hole centred at r, interacts with the electron also at r. 

The exact XC hole is centred at r’ 

 This is partially compensated by multiplying the pair correlation 

function with the density ratio (r)/(r’) 

 

 

 

 

 

 

 

 

EXCHANGE AND CORRELATION IN DFT:  

THE LOCAL DENSITY APPROXIMATION (LDA) 
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XC energy density of the HEG 
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 Location of the XC hole (Jones and Gunnarsson, 1982) 

 

 

 

 

 

 

 

EXCHANGE AND CORRELATION IN DFT:  

THE LOCAL DENSITY APPROXIMATION (LDA) 



 Favors more homogeneous electron densities 

 Overbinds molecules and solids (Hartree-Fock underbinds) 

 Geometries, bond lengths and angles, vibrational frequencies 

reproduced within 2-3% 

 Dielectric constants overestimated by about 10% 

 Bond lengths too short for weakly bound systems (H-bonds, VDW) 

 Correct chemical trends, e.g. ionization energies 
 

 Atoms (core electrons) poorly described (HF is much better) 

 XC potential decays exponentially into vacuum regions. It should 

decay as –e2/r. Hence, it is poor for dissociation and ionization 

 Poor for metallic surfaces and physisorption 

 Very poor for negatively charged ions (self-interaction error) 

 Poor for weakly bound systems: H-bonds (), VDW (non-local) 

 Band gap in semiconductors too small (~40%) 

 Poor for strong on-site correlations (d and f systems, oxides, UO2) 

 

 

 

 

 

 

 

 

LDA-LSDA: TRENDS AND LIMITATIONS 



 Inhomogeneities in the density 

 Self-interaction cancellation 

 Non-locality in exchange and correlation 

 Strong local correlations 

 

 Gradient expansions 

 Weighted density approximation 

 Exact exchange in DFT (OEP local vs HF non-local) 

 DFT-HF hybrids 

 Self-interaction correction 

 Van der Waals and RPA functionals 

 LSDA+U 

 Multi-reference Kohn-Sham 

 GW approximation (Many-body) 

 

 

 

 

 

 

 

 

BEYOND THE LDA 



 EXC expanded in gradients of the density 

 

 
 

where  is the spin polarization  

s=||/2kF is the density gradient 

And FXC is the enhancement factor 
 

 First-order term is fine, but higher-order terms diverge. Only by 

some re-summation to ∞-order the expansion converges. 

 GGA: FXC is designed to fulfil a number of exactly known 

properties, e.g. Perdew-Burke-Ernzerhof (PBE) 

1. Exchange: uniform scaling, LSDA limit, spin-scaling 

relationship, LSDA linear response, Lieb-Oxford bound  

2. Correlation: second-order expansion, hole sum rule, vanishes 

for rapidly varying densities, cancels singularity at high densities 

GRADIENT EXPANSIONS: 

GENERALIZED GRADIENT APPROXIMATION 

 rrrr dsFE XC

LSDA

XCGGA )](,,[)](,[)(][ 

r+dr 

(r+dr) 



 Improves atomization and surface energies 

 Favors density inhomogeneities 

 Increases lattice parameters of metals 

 Favors non-spherical distortions 

 Improves bond lengths 

 Improves energies and geometries of H-bonded systems 

 There is error cancellation between X and C at short range 
 

 XC potential still decays exponentially into vacuum regions 

 Some improvement in band gaps in semiconductors  

 What was correct in LDA is worsened in GGA 

 Still incorrect dissociation limit. Fractionally charged fragments 

 Inter-configurational errors in IP and EA 

 Error cancellation between X and C is not complete at long-range. 

X hole is more long-ranged than XC hole 

 

 

 

 

 

 

 

 

 

PROPERTIES OF THE GGA 



 Combine GGA local exchange with Hartree-Fock non-local 

exchange: 

 

 

 Parameter  fitted to experimental data for molecules (~0.75), or 

determined from known properties. 

 PBE0, B3LYP, HSE06 
 

 Properties: 

1. Quite accurate in many respects, e.g. energies and geometries 

2. Improve on the self-interaction error, but not fully SI-free 

3. Improve on band gaps 

4. Improve on electron affinities 

5. Better quality than MP2 

6. Fitted hybrids unsatisfactory from the theoretical point of view 

 

HYBRID FUNCTIONALS 
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 Self-interaction can be removed at the level of classical 

electrostatics: 

 

 

 

 

 

 

 Potential is state-dependent. Hence it is not an eigenvalue 

problem anymore, but a system of coupled PDEs 

 Orthogonality of SIC orbitals not guaranteed, but it can be 

imposed (Suraud) 

 Similar to HF, but the Slater determinant of SIC orbitals is 

not invariant against orbital transformations 

 The result depends on the choice of orbitals (localization) 

 

 

 

 

 

 

 

SELF-INTERACTION CORRECTION (SIC) 
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Perdew-Zunger 1982 

Mauri, Sprik, Suraud 



 Van der Waals (dispersion) interactions: are a dynamical 

non-local correlation effect 
 

 Dipole-induced dipole interaction due to quantum density 

fluctuations in spatially separated fragments 

 

 

 Functional (Dion et al 2004): 

 

 
 

 Expensive double integral 

 Efficient implementations (Roman-Perez and Soler 2009) 

 Good approximations based on dynamical response theory 

 Beyond VDW: Random Phase Approximation (Furche) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VAN DER WAALS FUNCTIONALS 

1(r,t) 2(r,t) 

1(t) E1(t).2(t) 

 ')'()',()( rrrrrr ddEVDW   = VDW kernel fully non-local. 

Depends on (r) and  (r’) 



 Strong onsite Coulomb correlations are ot captured by LDA/GGA 

 These are important for localized (d and f) electronic bands, where 

many electrons share the same spatial region: self-interaction 

problem 

 

 Semi-empirical solution: separate occupied and empty state by an 

additional energy U as in Hubbard’s model: 

 

 

 

 This induces a splitting in the KS eigenvalues: 
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SUMMARY OF DFT APPROXIMATIONS 


