P740.HW5.tex

Due 04/04/07

1. Shallow water A shallow channel has V-shaped cross section with breadth 2a and depth h_0 at the center, x = 0.

- 1. Show that the modes that flow back and forth across the channel (they are uniform along the channel) have even or odd symmetry about x = 0.
- 2. Find equations for the eigenvalues of both sets of modes. Find the lowest 6 eigenvalues.
- 3. Sketch the surface profile of the lowest 3 modes.

2. Bounded oil/water

- 1. Find the dispersion relation for the waves on the interface of 2 fluids. Fluid 1, density ρ_1 , resides $0 \le z \le h_1$ above fluid 2, density $\rho_2 > \rho_1$, that resides in $-h_1 \le z \le 0$. Gravity is at work.
- 2. Consider various limits, e.g. $\rho_1 \rightarrow \rho_2$, etc.

3. Fourier transform

Find the Fourier transform of

$$S(t; t_0, \Delta t, \Omega) = S(0) \frac{1}{\sqrt{2\pi(\Delta t)^2}} e^{-\frac{1}{2} \frac{(t-t_0)^2}{(\Delta t)^2}} \sin \Omega(t-t_0).$$
(1)

4. Fourier transform and dispersion. At t = 0 the displacement of a shallow water wave is

$$\delta h_0(x) = Cexp(-x^2/(2W^2)), \tag{2}$$

where W = 0.5 and C is fixed by $\int \delta h(x) dx = 1$. Find the location and shape of this disturbance at later times. Assume that the dispersion relation for water waves is (the almost shallow case)

$$\omega = c_0 k \left(1 - \alpha k^2 \right), \tag{3}$$

where $\alpha = 0.0001$. The answer in principle is

$$\delta h(x,t) = \int \frac{dk}{2\pi} \,\delta h(k) e^{i(kx - \omega(k)t},\tag{4}$$

where

$$\delta h(k) = \int dx \delta h(x) e^{-ikx}.$$
(5)

If there were no dispersion the solution to this problem would be $\delta h(x,t) = \delta h_0(x-c_0t)$. With dispersion it is much harder. Re-arrange Eq. (4)

$$\delta h(x,t) = \int \frac{dk}{2\pi} \,\delta h(k) e^{-i\omega(k)t} e^{i(kx)} = \int \frac{dk}{2\pi} \,\delta h(k,t) e^{i(kx)},\tag{6}$$

where

$$\delta h(k,t) = \delta h(k) e^{-i\omega(k)t}.$$
(7)

The solution, Eq. (6) is the inverse Fourier transform of $\delta h(k, t)$, a set of Fourier coefficients that evolve in time. Do this numerically (you may have to supply some parameters)

- 1. Choose the spatial interval over which you want to work.
- 2. Choose $\delta h(x)$. Norm it to 1 numerically.
- 3. Find $\delta h(k)$.
- 4. Make a choice of several moments of time, including t = 0. For each value of t form the factor $exp - i\omega(k)$ and $\delta h(k, t)$. [This is the place where this problem can be hard. Look at Note 12. Or ask.]
- 5. Find the inverse Fourier transform of $\delta h(k, t)$.
- 6. Plot $\delta h(x,t)$ vs x for a few times.
- 7. Comment on what you see.
- 8. Change the sign of α and repeat.

FIG. 1: