Physics 740: Spring 2007:

P740.16.tex

Viscous Fluid Flow.

1. The equations. We will deal with a viscous fluid in the case that the density is constant. Then the equations for mass conservation and momentum conservation reduce to

$$
\begin{align*}
\nabla \cdot \mathbf{v} & =0 \tag{1}\\
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v} & =-\frac{1}{\rho_{0}} \nabla P+D_{\eta} \nabla^{2} \mathbf{v} \tag{2}
\end{align*}
$$

where $D_{\eta}=\eta / \rho_{0}$ is the viscous diffusion constant. See the Table on LL 46 for some numbers.
2. The stress tensor and R_{e}. Two formal statements about Eqs. (1) and (2).

1. The forces on the RHS of Eq. (2) can be formally arranged to define a stress tensor

$$
\begin{align*}
\frac{\partial v_{i}}{\partial t}+(\mathbf{v} \cdot \nabla) v_{i} & =-\frac{1}{\rho_{0}} \frac{\partial P}{\partial x_{i}}+D_{\eta} \nabla^{2} v_{i}=\frac{1}{\rho_{0}} \sum_{j} \frac{\partial \sigma_{i j}}{\partial x_{j}} \tag{3}\\
\sigma_{i j} & =-P \delta_{i j}+\eta\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) \tag{4}
\end{align*}
$$

where the viscosity term has been symmetrized (check to see that this procedure leads to no change in the Navier -Stokes equation, Eq. (2)).
2. The size of the inertial term $(\mathbf{v} \cdot \nabla) v_{i}$ and the viscous stress term are
(a) inertial $(\mathbf{v} \cdot \nabla) v_{i} \sim U^{2} / L$,
(b) viscous stress $D_{\eta} \nabla^{2} v_{i} \sim D_{\eta} U / L^{2}$.

The ratio, defined to be the Reynolds number, is

$$
\begin{equation*}
R_{e}=\frac{U L}{D_{\eta}}=\frac{L^{2} / D_{\eta}}{L / U}=\frac{\tau_{D}}{\tau_{U}} . \tag{5}
\end{equation*}
$$

Here τ_{D} is the time to diffuse the distance L and τ_{U} is the time to travel that distance at velocity U. When $R_{e} \ll 1$ diffusion over L is much faster than fluid flow. In the opposite limit, $R_{e} \gg 1$ the diffusion and viscosity are relatively unmportant.
http://www.aip.org/pt/jan00/berg.htm. Life at $R_{e}=10^{-4}$.
E. coli, a self-replicating object only a thousandth of a millimeter in size, can swim

FIG. 1: Poiseuille Flow.

35 diameters a second, taste simple chemicals in its environment, and decide whether life is getting better or worse.

- Howard C. Berg
http://socrates.berkeley.edu/ shaevitz/Movies/Spiroplasma\%20Kinking.mov

3. Viscosity at work; two examples.

3a. Poiseuille Flow

Consider a fluid between two parallel plates, separated by $2 a$, that flows in response to a steady pressure gradient. See Fig. 1. Since $\mathbf{v}=\left(v_{x}(y), 0,0\right)$ the $(\mathbf{v} \cdot \nabla) v_{x}$ term in Eq. (2) is zero and we have

$$
\begin{equation*}
-\frac{1}{\rho_{0}} \frac{\partial P}{\partial x}+D_{\eta} \frac{\partial^{2} v_{x}}{\partial y^{2}}=0 \tag{6}
\end{equation*}
$$

For a non slip boundary condition at $y= \pm a$ we have

$$
\begin{equation*}
\rho_{0} v_{x}(y)=\frac{1}{2} \frac{a^{2}}{D_{\eta}}\left|\frac{\partial P}{\partial x}\right|\left(1-\frac{y^{2}}{a^{2}}\right)=\frac{1}{2} \tau_{\eta}\left|\frac{\partial P}{\partial x}\right|\left(1-\frac{y^{2}}{a^{2}}\right), \tag{7}
\end{equation*}
$$

a parabolic velocity profile for which the maximum velocity, at $y=0$, is proportional to $\tau_{\eta}=a^{2} / D_{\eta}$. This fluid flow, called Poiseuille flow, is controlled by the rate at which the viscosity carries momentum, delivered to the fluid by the pressure gradient, to the walls of

FIG. 2: Viscous penetration depth.
the flow space where it is lost. Hence the involvement of τ_{η}.

1. The total flow of fluid $Q=\int \rho_{0} v_{x}(y) d y \propto a^{3}$.
2. For a circular pipe expect $Q \propto a^{4}$, LL (17.10).
3. For a current in a conductor $I=V / R$ and $R=\rho L / A$ (here ρ is the resisitivity, L the length of the conductor and $A \propto a^{2}$ the cross sectional area). Thus $I \propto a^{2}$

3b. Viscous penetration depth.

See Fig. 2. Suppose the upper surface of a fluid is in contact with a solid surface that is oscillated at frequency ω. The fluid "sticks" to the surface so the upper edge of the fluid moves with velocity $v_{x}(y=0)=A \exp (-i \omega t)$. The equation of motion for the fluid is

$$
\begin{equation*}
\frac{\partial v_{x}}{\partial t}=D_{\eta} \frac{\partial^{2} v_{x}}{\partial y^{2}}, \tag{8}
\end{equation*}
$$

the x-component of Eq. (2), P does not depend on x and the inertial term is zero because v_{x} depends only on y. For $v_{x}(y)=U(y) \exp (-i \omega t)$ find

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial y^{2}}=\left(-i \omega / D_{\eta}\right) U=-\kappa^{2} U \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
U(y)=A \exp (i \kappa y)=A \exp \left(i k_{1} y\right) \exp \left(-k_{1} y\right)=A \exp \left(i k_{1} y\right) \exp \left(-y / \delta_{\eta}\right) \tag{10}
\end{equation*}
$$

where $k_{1}^{2}=\omega / 2 D_{\eta}$ and δ_{η} is the viscous penetration depth. The disturbance at the surface at frequency ω penetrates into the interior of the liquid to the approximate depth to which momentum can diffuse on time scale $T_{\omega} \approx \omega^{-1}, D_{\eta} T_{\omega} \approx \delta_{\eta}^{2}$.

The physics here is similar to that associated with the skin depth in E and M. In that case an electric field on the surface of a conductor attempts to move the electron gas within the conductor at frequency ω. It succeeds to depth

$$
\begin{equation*}
\delta_{\sigma}^{2} \approx \frac{c^{2} / \sigma}{\omega} \approx D_{\sigma} T_{\omega}, \tag{11}
\end{equation*}
$$

where $c^{2} / \sigma=D_{\sigma}, \sigma$ is the conductivity. Jackson, Sec. 7.7.

4. Low Reynolds number flow, the Stokes problem.

The problem is that of a sphere, radius R, moving through a viscous fluid with velocity $\mathbf{u}=(0,0, u)$. The problem solved is that of a sphere at rest with a fluid, having velocity \mathbf{u} at large distance, moving past the sphere. This is a steady flow problem; the equations to be solved are

$$
\begin{equation*}
\nabla \cdot \mathbf{v}=0, \quad-\nabla P+\eta \nabla^{2} \mathbf{v}=0 \tag{12}
\end{equation*}
$$

This is an algebra intensive problem. Begin by removing the pressure from the problem (we can come back and learn it at the end. [Here the pressure is an output, not an input.] Take curl of the second of Eq. (12) and use $\nabla \cdot \mathbf{u}=0$ to find the two equations of interest

$$
\begin{equation*}
\nabla \cdot(\mathbf{v}-\mathbf{u})=0, \quad \nabla^{2} \nabla \times \mathbf{v}=0 \tag{13}
\end{equation*}
$$

From first of these suggests writing $\mathbf{v}-\mathbf{u}$ as the curl of a vector field so that $\nabla \cdot$ will be automatically satisfied. Then, it is from the second that the conditions on this potential are established.

$$
\begin{equation*}
\mathbf{v}-\mathbf{u}=\nabla \times \mathbf{A} \tag{14}
\end{equation*}
$$

FIG. 3: Coordinate system.
The velocity field has no components in the \mathbf{e}_{ϕ} direction, by symmetry, Fig. 3. Look in Griffiths or Jackson; the vector potential points in that direction so that there are non-zero e_{r} and e_{θ} components. So the vector potential can be written in the form

$$
\begin{equation*}
A=g(r) \mathbf{e}_{r} \times \mathbf{u}=g(r) \mathbf{e}_{r} \times u \mathbf{e}_{z}=\nabla f(r) \times \mathbf{u}=\nabla \times(f(r) \mathbf{u}) \tag{15}
\end{equation*}
$$

since $\mathbf{e}_{r} \times \mathbf{e}_{z}=\mathbf{e}_{\phi}$. We need to find $f(r)$.
From Eqs. (14) and (13)

$$
\begin{align*}
\mathbf{v} & =\mathbf{u}+\nabla \times \mathbf{A}=\mathbf{u}+\nabla \times \nabla \times(f(r) \mathbf{u}), \tag{16}\\
\nabla \times \mathbf{v} & =\nabla \times \nabla \times \nabla \times(f(r) \mathbf{u}) \tag{17}\\
& =\left[\nabla(\nabla \cdot)-\nabla^{2}\right] \nabla \times(f(r) \mathbf{u}), \tag{18}\\
& =-\nabla^{2} \nabla \times(f(r) \mathbf{u}), \tag{19}\\
\nabla^{2} \nabla \times \mathbf{v} & =-\nabla^{2} \nabla^{2} \nabla \times(f(r) \mathbf{u})=0 \tag{20}\\
& =-\nabla^{2} \nabla^{2} \nabla(f(r) \times \mathbf{u})=0 \tag{21}\\
\nabla \nabla^{2} \nabla^{2} f(r) & =0 \tag{22}
\end{align*}
$$

This evolution uses such things as $\nabla \cdot \nabla \times=0$, the expansion for curl curl, etc. Since f only depends on $r \nabla=\partial / \partial r$ etc. There are 5 derivatives of f in the final formula. We want
to integrate this equation. The first integral is $\nabla^{2} \nabla^{2} f=$ constant $=0$, where the choice constant $=0$ comes from hindsight. To go on

$$
\begin{align*}
\nabla^{2} \nabla^{2} f & =\nabla^{2} h=0, \quad \nabla^{2} f=h, \tag{23}\\
\nabla^{2} h & =\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial h}{\partial r}=0, \quad h=\frac{2 a}{r}, \tag{24}\\
\nabla^{2} f & =h=\frac{2 a}{r}, \tag{25}\\
f & =a r+\frac{b}{r}, \tag{26}
\end{align*}
$$

where a and b are constants to be determined. Use $f(r)$ in Eq. (16) and find

$$
\begin{equation*}
\mathbf{v}=\mathbf{u}-\frac{a}{r}\left[\mathbf{u}+\mathbf{e}_{r}\left(\mathbf{u} \cdot \mathbf{e}_{r}\right)\right]-\frac{b}{r^{3}}\left[\mathbf{u}-3 \mathbf{e}_{r}\left(\mathbf{u} \cdot \mathbf{e}_{r}\right)\right] . \tag{27}
\end{equation*}
$$

To find a and b ask that $\mathbf{v}=0$ on the surface of the sphere. As \mathbf{v} in Eq, (27) is built up from two independent vectors, \mathbf{u} and \mathbf{e}_{r}, the amplitude of each must vanish at $r=R$. Thus

$$
\begin{equation*}
a=\frac{3}{4} R, \quad b=\frac{1}{4} R^{3} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathbf{v}}{u}=\left[1-\frac{3 R}{2 r}+\frac{R^{3}}{r^{3}}\right] \cos \theta \mathbf{e}_{r}-\left[1-\frac{3 R}{4 r}-\frac{R^{3}}{4 r^{3}}\right] \sin \theta \mathbf{e}_{\theta} . \tag{29}
\end{equation*}
$$

Before looking at this result let's go on and calculate a few other things of eventual interest. We find the pressure associated with the flow by going back to Eq. (12). Again some algebra

$$
\begin{align*}
\nabla P & =\eta \nabla^{2} \mathbf{v}=\eta \nabla^{2} \nabla \times \nabla \times(f \mathbf{u}), \tag{30}\\
\nabla P & =\eta \nabla^{2}\left[\nabla(\nabla \cdot)-\nabla^{2}\right](f \mathbf{u}), \tag{31}\\
\nabla P & =\eta \nabla^{2} \nabla(\nabla \cdot)(f \mathbf{u})=\eta \nabla \nabla^{2}(\nabla \cdot f \mathbf{u}), \tag{32}\\
P & =\eta \nabla^{2}(\nabla \cdot f \mathbf{u}), \tag{33}\\
P & =\eta \nabla^{2}(\mathbf{u} \cdot \nabla f)=\eta(\mathbf{u} \cdot \nabla) \nabla^{2} f=\eta(\mathbf{u} \cdot \nabla) \frac{3}{2} \frac{R}{r} \tag{34}
\end{align*}
$$

And finally

$$
\begin{equation*}
P=-\frac{3 \eta u}{2 R}\left(\mathbf{e}_{z} \cdot \mathbf{e}_{r}\right) \frac{R^{2}}{r^{2}} . \tag{36}
\end{equation*}
$$

Armed with this expression and the equation for \mathbf{v} one can learn the net force on the sphere. Again there is much detail See LL (20.13) et. seq. Except for numbers the answer must
scale as P times the area that P works on, i.e., πR^{2}. The force is opposite to the direction the sphere is moving

$$
\begin{equation*}
\mathbf{F} \propto R^{2} \times P(r=R) \approx \eta R u=-6 \pi \eta R u \mathbf{e}_{u} \tag{37}
\end{equation*}
$$

Summary

$$
\begin{align*}
\frac{\mathbf{v}}{u} & =\left[1-\frac{3 R}{2 r}+\frac{R^{3}}{r^{3}}\right] \cos \theta \mathbf{e}_{r}-\left[1-\frac{3 R}{4 r}-\frac{R^{3}}{4 r^{3}}\right] \sin \theta \mathbf{e}_{\theta} \tag{38}\\
P & =-\frac{3 \eta u}{2 R}\left(\mathbf{e}_{z} \cdot \mathbf{e}_{r}\right) \frac{R^{2}}{r^{2}} \tag{39}\\
\mathbf{F} & =-6 \pi \eta R u \mathbf{e}_{u} \tag{40}
\end{align*}
$$

5. Terminal velocity and such.

A sphere of radius R, density ρ_{M}, in a viscous liquid and in the presence of gravity obeys the equation of motion

$$
\begin{equation*}
M \dot{u}=-6 \pi \eta R u \mathbf{e}_{u}-M g \tag{41}
\end{equation*}
$$

where u is the velocity of the sphere and M its mass. Re-arrange this to read

$$
\begin{equation*}
\dot{u}=-\frac{1}{\tau_{S}} u-g \tag{42}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{\tau_{S}}=\frac{6 \pi \eta R}{M} \tag{43}
\end{equation*}
$$

Solution to this equation is

$$
\begin{equation*}
u(t)=u(0) e^{-\frac{t}{\tau_{S}}}+g \tau_{S}\left(1-e^{-\frac{t}{\tau_{S}}}\right) \tag{44}
\end{equation*}
$$

1. The initial velocity decays away on time scale τ_{S}.
2. The terminal velocity, $u_{T}=g \tau_{S}$ is established on the same time scale.
3. You can read the terminal velocity from Eq. (42) with $\dot{u}=0$. It is that velocity for which the Stokes drag balances the driving force.

FIG. 4:

FIG. 5:
6. High Reynolds number.

