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Viscous Fluid Flow.

1. The equations. We will deal with a viscous fluid in the case that the density is constant.

Then the equations for mass conservation and momentum conservation reduce to

∇ · v = 0, (1)

∂v

∂t
+ (v · ∇)v = − 1

ρ0

∇P + Dη∇2v, (2)

where Dη = η/ρ0 is the viscous diffusion constant. See the Table on LL 46 for some numbers.

2. The stress tensor and Re. Two formal statements about Eqs. (1) and (2).

1. The forces on the RHS of Eq. (2) can be formally arranged to define a stress tensor

∂vi

∂t
+ (v · ∇)vi = − 1

ρ0

∂P

∂xi

+ Dη∇2vi =
1

ρ0

∑
j

∂σij

∂xj

, (3)

σij = −Pδij + η

(
∂vi

∂xj

+
∂vj

∂xi

)
, (4)

where the viscosity term has been symmetrized (check to see that this procedure leads

to no change in the Navier -Stokes equation, Eq. (2)).

2. The size of the inertial term (v · ∇)vi and the viscous stress term are

(a) inertial (v · ∇)vi ∼ U2/L,

(b) viscous stress Dη∇2vi ∼ DηU/L2.

The ratio, defined to be the Reynolds number, is

Re =
UL

Dη

=
L2/Dη

L/U
=

τD

τU

. (5)

Here τD is the time to diffuse the distance L and τU is the time to travel that distance

at velocity U . When Re � 1 diffusion over L is much faster than fluid flow. In the

opposite limit, Re � 1 the diffusion and viscosity are relatively unmportant.

http://www.aip.org/pt/jan00/berg.htm. Life at Re = 10−4.

E. coli, a self-replicating object only a thousandth of a millimeter in size, can swim
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FIG. 1: Poiseuille Flow.

35 diameters a second, taste simple chemicals in its environment, and decide whether

life is getting better or worse.

– Howard C. Berg

http://socrates.berkeley.edu/ shaevitz/Movies/Spiroplasma%20Kinking.mov

3. Viscosity at work; two examples.

3a. Poiseuille Flow

Consider a fluid between two parallel plates, separated by 2a, that flows in response to a

steady pressure gradient. See Fig. 1. Since v = (vx(y), 0, 0) the (v · ∇)vx term in Eq. (2) is

zero and we have

− 1

ρ0

∂P

∂x
+ Dη

∂2vx

∂y2
= 0. (6)

For a non slip boundary condition at y = ±a we have

ρ0vx(y) =
1

2

a2

Dη

∣∣∣∣∣∂P

∂x

∣∣∣∣∣
(

1− y2

a2

)
=

1

2
τη

∣∣∣∣∣∂P

∂x

∣∣∣∣∣
(

1− y2

a2

)
, (7)

a parabolic velocity profile for which the maximum velocity, at y = 0, is proportional to

τη = a2/Dη. This fluid flow, called Poiseuille flow, is controlled by the rate at which the

viscosity carries momentum, delivered to the fluid by the pressure gradient, to the walls of
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FIG. 2: Viscous penetration depth.

the flow space where it is lost. Hence the involvement of τη.

1. The total flow of fluid Q =
∫

ρ0vx(y) dy ∝ a3.

2. For a circular pipe expect Q ∝ a4, LL (17.10).

3. For a current in a conductor I = V/R and R = ρL/A (here ρ is the resisitivity, L the

length of the conductor and A ∝ a2 the cross sectional area). Thus I ∝ a2

3b. Viscous penetration depth.

See Fig. 2. Suppose the upper surface of a fluid is in contact with a solid surface that is

oscillated at frequency ω. The fluid ”sticks” to the surface so the upper edge of the fluid

moves with velocity vx(y = 0) = Aexp (−iωt). The equation of motion for the fluid is

∂vx

∂t
= Dη

∂2vx

∂y2
, (8)

the x-component of Eq. (2), P does not depend on x and the inertial term is zero because

vx depends only on y. For vx(y) = U(y)exp (−iωt) find

∂2U

∂y2
= (−iω/Dη)U = −κ2U, (9)

3



and

U(y) = A exp (iκy) = A exp (ik1y) exp (−k1y) = A exp (ik1y) exp (−y/δη) (10)

where k2
1 = ω/2Dη and δη is the viscous penetration depth. The disturbance at the surface

at frequency ω penetrates into the interior of the liquid to the approximate depth to which

momentum can diffuse on time scale Tω ≈ ω−1, DηTω ≈ δ2
η.

The physics here is similar to that associated with the skin depth in E and M. In that case

an electric field on the surface of a conductor attempts to move the electron gas within the

conductor at frequency ω. It succeeds to depth

δ2
σ ≈

c2/σ

ω
≈ DσTω, (11)

where c2/σ = Dσ, σ is the conductivity. Jackson, Sec. 7.7.

4. Low Reynolds number flow, the Stokes problem.

The problem is that of a sphere, radius R, moving through a viscous fluid with velocity

u = (0, 0, u). The problem solved is that of a sphere at rest with a fluid, having velocity u

at large distance, moving past the sphere. This is a steady flow problem; the equations to

be solved are

∇ · v = 0, −∇P + η∇2v = 0. (12)

This is an algebra intensive problem. Begin by removing the pressure from the problem (we

can come back and learn it at the end. [Here the pressure is an output, not an input.] Take

curl of the second of Eq. (12) and use ∇ · u = 0 to find the two equations of interest

∇ · (v − u) = 0, ∇2 ∇× v = 0. (13)

From first of these suggests writing v − u as the curl of a vector field so that ∇· will be

automatically satisfied. Then, it is from the second that the conditions on this potential are

established.

v − u = ∇×A. (14)
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FIG. 3: Coordinate system.

The velocity field has no components in the eφ direction, by symmetry, Fig. 3. Look in

Griffiths or Jackson; the vector potential points in that direction so that there are non-zero

er and eθ components. So the vector potential can be written in the form

A = g(r)er × u = g(r) er × uez = ∇f(r)× u = ∇× (f(r)u), (15)

since er × ez = eφ. We need to find f(r).

From Eqs. (14) and (13)

v = u +∇×A = u +∇×∇× (f(r)u), (16)

∇× v = ∇×∇×∇× (f(r)u), (17)

= [∇(∇·)−∇2] ∇× (f(r)u), (18)

= −∇2 ∇× (f(r)u), (19)

∇2 ∇× v = −∇2 ∇2 ∇× (f(r)u) = 0, (20)

= −∇2 ∇2 ∇(f(r)× u) = 0, (21)

∇ ∇2 ∇2 f(r) = 0. (22)

This evolution uses such things as ∇ ·∇× = 0, the expansion for curl curl, etc. Since f

only depends on r ∇ = ∂/∂r etc. There are 5 derivatives of f in the final formula. We want
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to integrate this equation. The first integral is ∇2 ∇2f = constant = 0, where the choice

constant = 0 comes from hindsight. To go on

∇2 ∇2f = ∇2h = 0, ∇2f = h, (23)

∇2h =
1

r2

∂

∂r
r2∂h

∂r
= 0, h =

2a

r
, (24)

∇2f = h =
2a

r
, (25)

f = ar +
b

r
, (26)

where a and b are constants to be determined. Use f(r) in Eq. (16) and find

v = u− a

r
[u + er(u · er)]−

b

r3
[u− 3er(u · er)] . (27)

To find a and b ask that v = 0 on the surface of the sphere. As v in Eq, (27) is built up

from two independent vectors, u and er, the amplitude of each must vanish at r = R. Thus

a =
3

4
R, b =

1

4
R3 (28)

and
v

u
=

[
1− 3R

2r
+

R3

r3

]
cosθ er −

[
1− 3R

4r
− R3

4r3

]
sinθ eθ. (29)

Before looking at this result let’s go on and calculate a few other things of eventual interest.

We find the pressure associated with the flow by going back to Eq. (12). Again some algebra

∇P = η∇2v = η∇2 ∇×∇× (fu), (30)

∇P = η∇2 [∇(∇·)−∇2](fu), (31)

∇P = η∇2 ∇(∇·)(fu) = η∇ ∇2 (∇ · fu), (32)

P = η∇2 (∇ · fu), (33)

P = η∇2 (u · ∇f) = η(u · ∇) ∇2 f = η(u · ∇)
3

2

R

r
. (34)

(35)

And finally

P = −3ηu

2R
(ez · er)

R2

r2
. (36)

Armed with this expression and the equation for v one can learn the net force on the sphere.

Again there is much detail See LL (20.13) et. seq. Except for numbers the answer must
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scale as P times the area that P works on , i.e., πR2. The force is opposite to the direction

the sphere is moving

F ∝ R2 × P (r = R) ≈ ηRu = −6πηRueu. (37)

Summary

v

u
=

[
1− 3R

2r
+

R3

r3

]
cosθ er −

[
1− 3R

4r
− R3

4r3

]
sinθ eθ, (38)

P = −3ηu

2R
(ez · er)

R2

r2
, (39)

F = −6πηRueu. (40)

5. Terminal velocity and such.

A sphere of radius R, density ρM , in a viscous liquid and in the presence of gravity obeys

the equation of motion

Mu̇ = −6πηRueu −Mg, (41)

where u is the velocity of the sphere and M its mass. Re-arrange this to read

u̇ = − 1

τS

u− g, (42)

where
1

τS

=
6πηR

M
. (43)

Solution to this equation is

u(t) = u(0)e
− t

τS + gτS(1− e
− t

τS ). (44)

1. The initial velocity decays away on time scale τS.

2. The terminal velocity, uT = gτS is established on the same time scale.

3. You can read the terminal velocity from Eq. (42) with u̇ = 0. It is that velocity for

which the Stokes drag balances the driving force.
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FIG. 4:

Re = 270

FIG. 5:

6. High Reynolds number.
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