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1. n-star = pulsar.

1. The mass of the Sun is 2×1033 gm. Since mn ≈ 2×10−24 gms, the Sun contains about

1057 = (1019)3 particles. So it is a cube with 1019 particles on a side. If the particles

are spaced by 1 fermi = 10−13 cm, the cube has sides of length 106 cm = 10 km. A

McCarran is π km so the n-star has approximate radius of 1 McC.

2. From conservation of angular momentum
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≈ 5× 109. (1)

The Sun’s rotation rate is approximately 1/30 per day. So estimate Tn ≈ 0.5 msec.

That is fast for a n-star. There are lots of caveats. At the speed of light it would take

the sun about 15 sec to get around once. So Sun-like objects in rotation are not good

candidates for n-stars.

3. When r is scaled by R and ρ by M/R3 the equation of hydrostatic equilibrium takes

the form
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Q is the ratio of the gravitational pressure PG = GM2/R4 and the Pauli pressure
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upon using N = M/mn and V ≈ R3. Find PG ≈ 3× 1035 cgs and PP ≈ 10× 1035 cgs.

The two pressures are of the same order of magnitude, roughly 1029−30 atmospheres!

4. Estimate mnc
2
N ≈ h̄2/(mna

2
N), cN ≈ 2×109 cm/sec. Vibration time of order 0.5 msec.

Again the Sun is much too big. [The proposal that pulsars were n-stars used these

types of arguments to eliminate most astrophysical objects as candidates for explaining

the fast pulsing.]

2. vortices.
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1. From inspection of the figures, e.g., lower left

x1 = R1S, (5)

y1 = y0 + R1C, (6)

x2 = R2S, (7)

y2 = y0 + R2C, (8)

where S, C are sinωt and cosωt, y0 is the center of a circle centered on the x = 0 axis,

R1,2 are radii and ω is the frequency of the motion. Substitute this guess into the

equations of motion and find, e.g., from the ẋ1 and ẋ2 equations

R1 = 2K2/(K1 + K2), (9)

R2 = −2K1/(K1 + K2), (10)

ω = K1 + K2, (11)

y0 = (K1 −K2)/(K1 + K2). (12)

Solve and find R1 = 4/3, R2 = −2/3, ω = 3 and y0 = −1/3. For the lower right find

R1 = 4, R2 = 2, ω = −1 and y0 = −3.

3. quantized vortex profile?

Begin with the Euler equation in the form

−κ2

r3
er = − 1

ρ0

∂P

∂r
er −

1

ρ0

∂P

∂z
ez − gez, (13)

where the term on the left side comes from

v · ∇v =
κ

r2

∂

∂θ
v = −κ2

r3
er (14)

κ = h̄/m. Find

P (r, z) = −ρ0
κ2

2r2
− ρ0gz + C. (15)

Fix the constant of integration by the choice at z = 0, r → +∞, P = P0. Since P at the

surface of the fluid is P0, at the surface

z = − κ2

2gr2
. (16)
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FIG. 1: From ode45 in MATLAB.
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At r ≈ σ ≈ 3 Angstroms z(a) ≈ 100− 200 m. This is unphysical. What is missing? [As the

quantization is Bohr quantization the speeds are, except for the mass, those of an electron

in a Bohr orbit!] For gravity to produce the pressure gradient necessary to support the very

rapid circular motion of the fluid at small radius the surface must be highly curved. [Bohr

had −e2/r2.] This cost an enormous amount of surface energy which is not part of your

calculation. All pieces of material would like to reduce the amount of surface they have?

Why? Liquids can usually move to do so. In the case at hand a proper calculation would

include the surface tension and give a very different result.
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FIG. 2: Two fluid in a rotating tube.
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