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1. The atmosphere has scale height zT = kBT/(mg). While careful calculation is possible

the essential content (only some numbers will be different,and not by much) is that the size

of the atmosphere is

VA = 4πR2zT . (1)

The density of gas in the atmosphere is approximately ρ(0) = mN/V where N/V =

P (0)/(kBT ). Thus

MA = ρ(0)VA = 4πR2P (0)

g
≈ 5× 1021 grams. (2)

The mass of the earth is ME ≈ 6× 1027 grams. Annual emission of carbon into atmosphere

by US is 2× 1015 grams.

2. With the equation of state of the material the equation of hydrostatic equilibrium is
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(
r2∂ρ
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= ρ

′′
+
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r
ρ

′
= −κ2ρ, (3)

where κ2 = 4πGρ2
0/P0. A possible way to solve this equation is with the substitution ρ = Q/r

(often used in QM for D=3 problems, but not always). Find

Q
′′

= −κ2Q. (4)

This equation has solutions in terms of sin κr and cos κr. At the star radius, r = R, we have

P = 0 and from the EOS ρ = 0. So choose

ρ = A
sin κ(R− r)

r
. (5)

Note: that if κR > π it is possible that the star will have negative density. Is that OK?

Fix A by requiring that the total mass of the star be M . Thus

M = A 4π
∫ R

0
r sin κ(R− r) dr. (6)

It is useful to scale r by R and ρ by ρ = M/VR (VR = 4πR3/3) here, possibly earlier or

later. For example

A =
M

VR

3R
1∫ 1

0 x sin α(1− x) dx
, (7)
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FIG. 1: ln(ρ(x)) as a function of x for 4 values of α

where α = κR. Find A and rearrange

ρ∗ =
ρ

ρ
=

α

3(1− Sα)

sin α(1− x)

x
. (8)

where Sα = sin α/α. See Fig. 1.

3. Start with Eqs. (33)=(35) in linear form, equilibrium at (ρ0, P0, θ0,u0 = 0) and first order

terms (δρ, δP, δθ,u):

δρ̇ + ρ0∇ · u = 0, (9)
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u̇ = − 1

ρ0

∇δP +
Dη

3
∇(∇ · u) +∇2u, (10)

δθ̇ = − θ0

CV

∇ · u + Dκ∇2δθ, (11)

δP = Λρδρ + Λθδθ, (12)

where Λx = ∂P/∂x. Use

δρ = A exp i(k · x− ωt), (13)

δθ = B exp i(k · x− ωt), (14)

δP = H exp i(k · x− ωt), (15)

u = C exp i(k · x− ωt). (16)

(17)

and find

−iωA + ρ0ik ·C = 0, (18)

−iωC = −ik
H

ρ0

− Dη

3
k(k ·C)− k2DηC, (19)

−iωB = − θ0

CV

ik ·C−Dκk
2B, (20)

H = ΛρA + ΛθB. (21)

Solve Eqs. (10) and (12) for use in Eqs. (13) and Eq. (11)

H

ρ0

=

(
Λρ +

Λθθ0

ρ0CV

ω

ω + ik2Dκ

)
k ·C

ω
= c2(ω)

k ·C
ω

, (22)

iωC = ik c2(ω)
k ·C

ω
+

Dη

3
k(k ·C) + k2DηC. (23)

Dot this equation with k, remove k ·C and re-arrange

iω = ik2 c2(ω)
1

ω
+

Dη

3
k2 + k2Dη. (24)

ω2 = k2 c2(ω)− i
4Dη

3
k2ω. (25)

We are not done yet because c2(ω) is complicated and complex. Sort it into a real and

imaginary parts

c2(ω) = c2
0(ω)− ic2

R

k2Dκ

ω

1 +
(

k2Dκ

ω

)2 (26)
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where

c2
0(ω) = c2

T + c2
R

1

1 +
(

k2Dκ

ω

)2 (27)

where c2
T = (∂p/∂ρ)T is the isothermal sound speed and

c2
R =

Λθθ0

ρ0CV

. (28)

Finally

ω2 = k2 c2
0(ω)− i

4

3
k2 Dη ω − ik2c2

R

k2Dκ

ω

1 +
(

k2Dκ

ω

)2 = k2 c2
0(ω)− iRη − iRκ. (29)

Note

1. c2
0(ω). As ω → 0, c2

0 → c2
T , the isothermal sound speed. As ω → +∞, c2

0 → c2
T + c2

R,

which must be the adiabatic sound speed. The thermal diffusivity and (k, ω) control

the trasition from isothermal to adiabatic.

2. Damping. There are two damping terms, one involving the viscosity and a second

involving the thermal diffusivity. The damping when both terms are present is the

sum of two independent damping terms. They do not interfere with one another. The

damping processes are addative. This is like resistors in series. Resistors in parallel

interfere with one another. For two resistors in parallel the current through one can

only be learned when you know the size of the second.
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