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A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals
from first principle calculations is described. This is applied for TiSi2 and we calculate the elastic
constants using a full potential linear muffin-tin orbital method using the local density
approximation ~LDA ! and generalized gradient approximation~GGA!. The calculated values
compare favorably with recent experimental results. An expression to calculate the bulk modulus
along crystallographic axes of single crystals, using elastic constants, has been derived. From this
the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear
modulus, Young’s modulus, and Poisson’s ratio for ideal polycrystalline TiSi2 are also calculated
and compared with corresponding experimental values. The directional bulk modulus and the
Young’s modulus for single crystal TiSi2 are estimated from the elastic constants obtained from
LDA as well as GGA calculations and are compared with the experimental results. The shear
anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal
elastic constants. From the site and angular momentum decomposed density of states combined with
a charge density analysis and the elastic anisotropies, the chemical bonding nature between the
constituents in TiSi2 is analyzed. The Debye temperature is calculated from the average elastic wave
velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities
in different directions of the single crystal. The calculated elastic properties are found to be in good
agreement with experimental values when the generalized gradient approximation is used for the
exchange and correlation potential. ©1998 American Institute of Physics.
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I. INTRODUCTION

Elastic properties of a solid are important because t
relate to various fundamental solid-state properties such
interatomic potentials, equation of state, and phonon spe
Elastic properties are also linked thermodynamically to
specific heat, thermal expansion, Debye temperature, me
point, and Gru¨neisen parameter. Plastic properties of mate
als are also closely associated with the shear moduli a
the slip planes of mobile dislocations, since these dislo
tions can dissociate into partials with a spacing determi
by the balance between the fault energy and the repul
elastic force. The elastic constants determine the respon
the crystal to external forces, as characterized by bulk mo
lus, shear modulus, Young’s modulus, and Poisson’s ra
and obviously play an important part in determining t
strength of the materials. Values of elastic constants prov
valuable information about the bonding characteristic
tween adjacent atomic planes and the anisotropic charact

a!Electronic mail: P.Ravindran@fysik.uu.se
4890021-8979/98/84(9)/4891/14/$15.00
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the bonding and structural stability. It has also been noti
that there is a correlation between the elastic constants
the melting temperature of a solid.1,2 Pugh3 introduced the
ratio between the bulk and shear modulus,B/G, for poly-
crystalline phases as a measure of fracture/toughness in
als. A high ~low! B/G value is associated with ductility
~brittleness!, and we will elaborate on this empirical relation
ship later.

Elastic constants for most pure metals are available o
a wide range of temperature in the literature. In contrast, d
for alloys and intermetallic compounds are much more li
ited. In particular, single crystal elastic constants, which
required in the basic studies mentioned above, are not a
able except for a few intermetallic compounds.4 Efforts have
been made to calculate the elastic constants theoretic
from so-called first principles calculations and, although
bulk modulus has been calculated for various materials,
culations of the other elastic constants are relatively scar5

Among these most of the attempts have been made to ca
late the elastic constants of cubic materials6 from first prin-
1 © 1998 American Institute of Physics
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ciples, while only very few have been made to calculate
elastic constants of low symmetry systems such
tetragonal7 and hexagonal8 systems. The main problem i
estimating elastic constants from first principles is not o
the requirement of accurate methods for calculating the t
energy but also the complicated heavy computations
volved in the calculation of elastic constants. Further, if
symmetry of the system is reduced, the number of indep
dent elastic constants increases and hence a larger numb
distortions is required to calculate the full set of elastic co
stants. Because of the above facts no attempt has, to
knowledge, yet been made to calculate the elastic const
of low symmetric systems with orthorhombic, monoclin
and triclinic structures.

The elastic behavior of a completely asymmetric ma
rial is specified by 21 independent elastic constants, w
for an isotropic material, the number is 2. In between th
limits the necessary number is determined by the symm
of the material, and it is 9 for orthorhombic crystals. The
nine independent elastic constants are usually referred t
c11, c22, c33, c44, c55, c66, c12, c13, andc23. A theoretical
treatment of the elasticity of orthorhombic systems is th
considerably more involved than for cubic, hexagonal, a
tetragonal structures which have three, five, and six indep
dent elastic constants, respectively. The task of calcula
the elastic constants of orthorhombic crystals becomes e
more difficult when realizing that the strains needed to c
culate some of them give rise to a geometry with very l
symmetry. Possibly this is the reason why so far no theo
ical work on elastic constants of orthorhombic systems ba
on first principle methods have been published.

Titanium silicides, with their distinct properties of low
density, high thermal and electrical conductivity, strong a
hesion with silicon substrates, and high corrosion resista
to caustic gases, are mainly applied in very large scale i
gration ~VLSI! circuits, such as interconnects, gate meta
zation, and Schottky barriers. Further, the low density, h
creep strength, high melting point, superior oxidation res
tance, high hardness~'850 Hv!, and flow stresses of mor
than 1200 MPa for TiSi2 makes this compound a potenti
aero-space engineering material. All nine independent ela
constants of the orthorhombic C54 structure TiSi2 have re-
cently been determined experimentally.2 This motivated us
to calculate all nine independent elastic constants and rel
properties of TiSi2 from first principle electronic structure
calculations. Because of the special significance of the
tropic bulk modulus, shear modulus, Young’s modulus, a
Poisson’s ratio for technological and engineering appli
tions, we have also calculated these quantities from the e
tic constants.

The remainder of the paper is organized as follows:
Sec. II we describe the underlying theory for the calculat
of elastic constants of orthorhombic crystals as well as
computational aspects of our study. In Sec. III we have co
pared our theoretically obtained single crystal elastic c
stant data with the experiment. Section IV deals with
polycrystalline bulk modulus, shear modulus, Youngs mo
lus, and Poisson’s ratio, using the single crystal elastic c
stants obtained from our present numerical work, as wel
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those reported from the experimental studies. In Sec. V
discuss the elastic anisotropy in TiSi2 through shear anisot
ropy factors, bulk modulus anisotropic factor, and percent
elastic anisotropy. In Sec. VI the nature of chemical bond
in TiSi2 has been investigated through the elastic anisotro
site and angular momentum decomposed density of s
~DOS!, and charge density analysis. In Sec. VII we ha
calculated the Debye temperature from the elastic const
by using the average elastic wave velocity as well as
integration of elastic wave velocity in a different direction
the single crystal. The important conclusions derived fro
our calculations are summarized in Sec. VIII. The expli
expressions to calculate bulk modulus along crystallograp
directions from elastic constants for orthorhombic crystals
well as the calculated values are given in the Appendix.

II. DETAILS OF CALCULATIONS

A. Crystal structure aspects of TiSi 2

TiSi2 crystallizes in the C54 type of structure~space
group FdddD2h

24! congruently at 1480 °C from the melt an
the room temperature lattice parameters are presente
Table I. There are 16 silicon and eight titanium atoms in
unit cell at 16e ~1/3 0 0! and 8a ~0 0 0! Wyckoff positions,
respectively. The crystal structure of TiSi2 in the C54
~OF24! structure is shown in Fig. 1. In this figure the tita
nium and silicon as well as silicon and silicon are connec
by bonds. The unit cell of TiSi2 contains 24 atoms or eigh
formula units with close-packed hexagonal layers, which
stacked on top of each other in such a way that the Ti ato
of adjacent layers avoid close contact.9 In the transition
metal disilicides with C11b (MoSi2) and C40 (CrSi2 , NbSi2
and TaSi2! structures, the silicon atoms remain close

TABLE I. The equilibrium structural parameters for TiSi2 obtained from the
LDA and GGA calculations. The lattice parametersa, b, andc are in Å and
the equilibrium unit cell volume (V0) is in Å3.

a b c a/b c/b V0

LDA 8.08 4.74 8.53 1.71 1.80 326.74
GGA 8.21 4.81 8.64 1.71 1.80 340.95
Experimenta 8.27 4.80 8.55 1.72 1.78 339.30

aFrom Ref. 11.

FIG. 1. The C54 type crystal structure of TiSi2 . The black balls represent
the Ti atoms and the white balls represent Si atoms.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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bonded in sheets normal to the stacking plane.10 However,
for the C54 (TiSi2) structure, the Si–Si chain is interrupte
with Ti atoms as shown in Fig. 1. The breaking of the Si–
chains qualitatively implies increased metallic character
this may be the reason for the elevated thermal and elect
conductivity in TiSi2 , among the transition metal disilicide

B. Structural optimization from total energy studies

Before performing calculations to obtain the elastic co
stants we have first optimized the structural parameter
TiSi2 using both the local density approximation~LDA ! as
well as the generalized gradient approximation~GGA!. In
doing this we first adopted the experimentala/b and c/b
ratios and optimized the equilibrium volume. We then us
the theoretical equilibrium volume and optimized the ra
a/b as well asc/b. The structural optimization, total energ
curves for TiSi2 obtained from our GGA calculations ar
shown in Fig. 2. From this figure it is clear that the equili
rium structural parameters obtained from our GGA calcu
tions are in very good agreement with the correspond
experimental values.

In Table I we list the calculated and experimental valu
of the equilibrium lattice parameters and volume obtain

FIG. 2. The structural optimization curves for TiSi2 from GGA calculations.
The experimental structural parameters are taken from Rosenkranz
Frommeyer~see Ref. 11! DE represent the total energy added by 57
Ry/cell.
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i
d
al

-
of

d

-
g

s
d

from our LDA as well as GGA calculations along with th
experimental values.11 The theoretically estimated equilib
rium volume, which neglects zero-point motion and therm
expansion, is underestimated in our LDA calculation
3.7%, relative to the experimental value and overestima
by 0.5% in our GGA calculation. From Table I we have th
found that overall the equilibrium lattice parameters obtain
from our GGA calculations are in better agreement with
experiments than those obtained from our LDA calculatio

C. Calculation of elastic constants

The face centered orthorhombic phase of TiSi2 has three
lattice parametersa, b, andc, with the Bravais lattice vectors
of the matrix form

R51/2S 0 1 c/b

a/b 0 c/b

a/b 1 0
D .

The full potential linearized muffin-tin orbital~FPLMTO!12

method allows total energy calculations to be done for a
trary crystal structures. We can therefore apply small stra
to the equilibrium lattice, determine the resulting change
the total energy, and from this information deduce the ela
constants. The elastic constants are identified as proporti
to the second order coefficient in a polynomial fit of the to
energy as a function of the distortion parameterd.13 We de-
termine linear combinations of the elastic constants
straining the lattice vectorsR according to the ruleR85RD.
Here R8 is a matrix containing the components of the d
torted lattice vectors andD is the symmetric distortion ma
trix, which contains the strain components. We shall co
sider only small lattice distortions in order to remain with
the elastic limit of the crystal. In the following we sha
briefly list the relevant formulas needed to obtain the ela
constants of orthorhombic crystals. The internal energy o
crystal under strain,d, can be Taylor expanded in powers
the strain tensor with respect to the initial internal energy
the unstrained crystal in the following way:

E~V,d!5E~V0,0!1V0S (
i

t ij id i

11/2(
i j

ci j d ij id jj j D 1O~d3!. ~1!

The volume of the unstrained system is denotedV0 and
E(V0,0) is the corresponding total energy. We have used
Voigt notation in the equation above which replacesxx, yy,
zz, yz, xz, andxy by 1, 2, 3, 4, 5, and 6, respectively. Whe
introducing the Voigt notation, one has to remember that
d’s are symmetric. To account for this, we introduced t
factor j i , which takes the value 1 if the Voigt index is 1, 2
or 3 and the value 2 if the Voigt number is 4, 5, or 6. In t
equation above,t i is an element in the stress tensor. T
Taylor expansion of the total energy should be done in te
of Lagrangian coordinatesh which relate the Eulerian coor
dinatesd by the equation,h5d11

2dd. Sinced is small the
approximationh5d is valid ~the effect in the present case
the third decimal!.

nd
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Since we have nine independent elastic constants,
need nine different strains to determine these. The nine
tortions used in the present investigation are described
low. The first three elastic constants,c11, c22, andc33, are
obtained by the following distortion matricesD1 , D2 , and
D3 , respectively, and correspond to straining the latt
along thex, y, andz axis, respectively. These distortion m
trices are written as

D15S 11d 0 0

0 1 0

0 0 1
D ,

D25S 1 0 0

0 11d 0

0 0 1
D

and

D35S 1 0 0

0 1 0

0 0 11d
D .

In all these distortions, the symmetry of the strained l
tice still remains orthorhombic. However, the volume
changed by the distortion. The energy associated with th
distortions can be obtained by putting the values of the st
matricesD1 , D2 , andD3 in Eq. ~1! and we obtain

E~V,d!5E~V0,0!1V0S t1d1
c11

2
d2D , ~2!

E~V,d!5E~V0,0!1V0S t2d1
c22

2
d2D , ~3!

and

E~V,d!5E~V0,0!1V0S t3d1
c33

2
d2D , ~4!

respectively. From these relations we obtain the elastic c
stantsc11, c22, andc33. Using the following volume con-
serving monoclinic shear distortions,

D45S 1

~12d2!1/3 0 0

0
1

~12d2!1/3

d

~12d2!1/3

0
d

~12d2!1/3

1

~12d2!1/3

D ,

D55S 1

~12d2!1/3 0
d

~12d2!1/3

0
1

~12d2!1/3 0

d

~12d2!1/3 0
1

~12d2!1/3

D
and
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D65S 1

~12d2!1/3

d

~12d2!1/3 0

d

~12d2!1/3

1

~12d2!1/3 0

0 0
1

~12d2!1/3

D ,

we obtain the shear elastic constantsc44, c55, andc66. The
energy corresponding to the distortionsD4 , D5 , andD6 can
be written as

E~V,d!5E~V0,0!1V0~2t4d12c44d
2!, ~5!

E~V,d!5E~V0,0!1V0~2t5d12c55d
2!, ~6!

and

E~V,d!5E~V0,0!1V0~2t6d12c66d
2!, ~7!

respectively. The relations above give thec44, c55, andc66

elastic constants directly. We are left with three more ela
constantsc12, c13, andc23. These elastic constants can b
calculated by means of volume conserving orthorhombic d
tortions of the following types:

D75S 11d

~12d2!1/3 0 0

0
12d

~12d2!1/3 0

0 0
1

~12d2!1/3

D ,

D85S 11d

~12d2!1/3 0 0

0
1

~12d2!1/3 0

0 0
12d

~12d2!1/3

D
and

D95S 1

~12d2!1/3 0 0

0
11d

~11d2!1/3 0

0 0
12d

~12d2!1/3

D .

Among these three distortions,D7 increasesa and decreases
b with an equal amount andc remains constant. TheD8

distortion increasesa and decreasesc with an equal amount
andb is kept constant. TheD9 distortion, finally increasesb
and decreasesc with an equal amount anda remains con-
stant. Hence, the resulting symmetry of the strained ob
from theD7 , D8 , andD9 distortions is the same as that o
the unstrained lattice and in addition the volume is conser
in these distortions.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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The energy associated with these distortions can be
tained by putting the values of the strain matricesD7 , D8 ,
andD9 into Eq. ~1! and are

E~V,d!5E~V0,0!1V0@~t12t2!d

1 1
2~c111c2222c12!d

2#, ~8!

E~V,d!5E~V0,0!1V0@~t12t3!d

1 1
2~c111c3322c13!d

2#, ~9!

and

E~V,d!5E~V0,0!1V0@~t22t3!d

1 1
2~c221c3322c23!d

2#, ~10!

respectively. The relations above give the value of the ela
constantsc12, c13, and c23 with the superposition of the
already calculated elastic constantsc11, c22, andc33.

D. Computational details

Using the above-mentioned strains, we have calcula
the total energy self-consistently by means of first princip
electronic structure calculations, based on the dens
functional theory and we use the all-electron full potent
linear muffin-tin orbital method.12 The calculations of the
elastic constants were done at the theoretically derived e
librium lattice parameters. In the FPLMTO method, no sha
approximation is made to the potential and the charge d
sity; the warping terms in the interstitial region and the no
spherical contribution at the sites of the nuclei are explic
taken into account. The density and potential are expande
cubic harmonics inside non-overlapping muffin-tin~MT!
spheres and in a Fourier series in the interstitial region.
ratio between the lattice constanta and the muffin-tin radius
was kept constant for the various strains and was chose
be equal for both the Ti and Si MT spheres. Spherical h
monic expansions were carried out throughl max58 for the
bases, potential, and charge density. The exchange
correlation potential was treated in the LDA using t
von Barth–Hedin parametrization. The LDA is in princip
only valid for slowly varying densities and is known to sho
an overbinding of atoms in molecules and solids. Hence
remedy this situation we have also used the GGA as p
posed by Perdew and Wang.14

The basis set was comprised of augmented lin
muffin-tin orbitals.15 The tails of the basis functions outsid
their parent spheres were linear combinations of Hanke
Neumann functions with nonzero kinetic energy. The ba
contains 4s, 3p, 5p, 3d, and 4f orbitals on the titanium site
and 3s, 2p, 3p, 3d, and 4f for the Si site. All orbitals were
contained in the same energy panel, with the 3p of Ti and
2p of Si treated as pseudovalence states in an energy
which is different from the rest of the basis function. Furth
we used a so-called ‘‘double basis’’ where we used two d
ferent orbitals ofl, ml character each connecting, in a co
tinuous and differential way, to Hankel or Neumann fun
tions with different kinetic energy. The integration over t
Brillouin zone was done using the special point samplin16

with a Gaussian width of;10 mRy. For the calculations o
Downloaded 10 Feb 2009 to 130.238.7.43. Redistribution subject to AIP
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the equilibrium volume,a/b, c/b, and the strainsD1 , D2 ,
D3 , D7 , D8 , and D9 , we have used 64k points in the
irreducible wedge of the first Brillouine zone~IBZ! of the
face centered orthorhombic lattice. As mentioned earlier,
application of theD4 , D5 , and D6 strains on the lattice
implies a lowering of symmetry and hence we have used
k points in the IBZ of the primitive monoclinic lattice fo
these strains. To avoid the influence of higher order terms
the estimated elastic constants we have used very s
strains, i.e., within61.5%.

III. COMPARISON OF SINGLE CRYSTAL ELASTIC
CONSTANTS

In Figs. 3~a! and 3~b! we have plotted the changes
total energy (DE) versus straind for TiSi2 for the nine dif-
ferent types of distortions discussed in Sec. II C. The res
are obtained from LDA and GGA calculations, respective
using the corresponding theoretical equilibrium structural
rameters given in Table I. The elastic constantsci j are ob-
tained by means of polynomial fits. The polynomial fit to th
points @dotted lines in Figs. 3~a! and 3~b!# were truncated
after the third-order term. It should be noted that, to mi
mize the errors coming from higher order terms, we ha
used very small distortions. We may now compare our c
culated elastic constants with the experimental elastic c
stants measured at room temperature.2 The elastic constants
obtained from our GGA calculations given in Table II a
found to compare very favorably with the experimental v
ues, and are in somewhat better agreement with the exp
ment than the ones obtained from LDA calculations. T
deviations in the calculated elastic constants from the exp
mental values are partly due to temperature and volume
fects. It should also be noted that the elastic constantsc12,
c13, andc23 obtained both from LDA and GGA calculation
deviate;25% from the corresponding experimental valu
and one possible reason is as follows. The above-mentio
elastic constants are not possible to calculate straight a
from just one single distortion, but can only be obtain
together with other elastic constants. As an examplec12 must
thus be calculated from distortionsD1 , D2 , andD8 . From
the corresponding equations~2!, ~3!, and ~8! we see that in
order to extractc12, we must subtract the second-order c
efficient in the three equations from each other. Howev
errors made in calculating the differentci j ’s which were used
to calculate thec12 may contribute to the error inc12, pro-
ducing a large deviation from the experiment. Hence, it
more reasonable to compare the appropriate superposi
of elastic constants rather than individual constants. As m
tioned earlier the superposition of elastic constantsc111c22

22c12, c111c3322c13, andc221c3322c23 can be obtained
directly from theD7 , D8 , andD9 distortions, respectively
Hence, we compare these values with the experimen
Table II. It is interesting to note that the deviation betwe
experiment and theory is drastically reduced when we co
pare the superposition of elastic constants rather than
individual values. Hence, we conclude that for TiSi2 the
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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FIG. 3. Changes in the strain energy (DE) as a function of strain~d! for TiSi2 from LDA ~a! and GGA~b! calculations. The black circles represent th
calculated values and the dotted line is the polynomial fit. The arrows indicate the experimental values.DE represent the total energy added by 5737 Ry/c
s

gy

n.
this
deviation in elastic constants from the experimental value
within ;30% in the LDA calculations and within;18% in
our GGA calculation.

It is interesting to know the curvature of the total ener
Downloaded 10 Feb 2009 to 130.238.7.43. Redistribution subject to AIP
iswith respect to length changes in any arbitrary directio
From the compliance constants it is possible to calculate
property, which is related to the directional bulk modulusK,
using the following relation:
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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1

K
5~s111s121s13!l 1

21~s121s221s23!l 2
2

1~s131s231s33!l 3
2, ~11!

where l 1 , l 2 , and l 3 are the direction cosines. Using th
above relation, the calculated bulk modulus along differ
directions from the theoretical as well as experimental ela
constants are shown in Fig. 4. For an isotropic system
will obtain a spherical shape in the directional depend
bulk modulus. The nonspherical nature of the bulk modu
of TiSi2 in Fig. 4 clearly shows the anisotropy in the bu
modulus. To compare our theoretically obtained bulk mo
lus along different directions with experimental values o
might add that if we compensate for the volume effect of
elastic constants we cannot conclude that the GGA calc
tions are better than the LDA calculations, but they are of
same magnitude. One way of compensating for the volu
effect is to normalize the elastic constants with the cor
sponding bulk modulus.8 We have plotted the bulk modulu
in different crystallographic planes in Fig. 5. From Fig. 5
can be clearly seen that the bulk modulus obtained from
GGA calculation is in good agreement with the experim
regarding both the magnitude and directional behavior.
have also calculated the bulk modulus along thea, b, andc
axes in Fig. 5. The calculated bulk modulus along thea, b,
and c axes of TiSi2 are consistent with the ones obtain

TABLE II. The single crystal elastic constants (ci j in Mbar! for TiSi2 ob-
tained from LDA as well as GGA calculations.dL anddG are the percentage
of deviation of elastic constants obtained from the LDA and GGA calcu
tions from the experimental values.

ci j LDA dL(%) GGA dG(%) Expa

c11 3.772 18.8 3.260 2.6 3.175
c22 3.411 6.4 2.984 26.8 3.204
c33 4.253 2.9 3.719 29.9 4.132
c44 1.365 21.3 1.235 9.7 1.125
c55 0.937 23.6 0.853 12.5 0.758
c66 1.546 31.5 1.359 15.7 1.175
c12 0.278 5.3 0.224 23.7 0.293
c13 0.213 244.5 0.265 31.1 0.384
c23 0.951 10.5 1.055 22.6 0.860

c111c2222c12 6.628 14.4 5.797 0.0 5.792
c111c3322c13 7.599 16.2 6.449 21.3 6.538
c221c3322c23 5.763 2.6 4.593 18.2 5.616

aFrom Nakamura~see Ref. 2!.

FIG. 4. Illustration of directional dependence of the bulk modulus. T
distance between zero and any point on the elipsoid/surface is equal t
bulk modulus in that direction:~a! calculated from LDA elastic constants
~b! from GGA elastic constants, and~c! from the experimental elastic con
stants of Nakamura~see Ref. 2! DE represent the total energy added b
5737 Ry/cell.
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from experiments of the linear compressibility,17 where the
change in thea, b, andc lattice parameters is measured as
function of hydrostatic pressure. The relationship betwe
the linear compressibility and the elastic constants is deri
in the Appendix and is given by Eqs.~A2!–~A4!.

IV. CALCULATION OF ELASTIC CONSTANTS FOR
POLYCRYSTALLINE AGGREGATES

A problem arises when single crystal samples are
available, since it is then not possible to measure the in
vidual elastic constantsci j . Instead, the polycrystalline bulk
modulus ~B! and shear modulus~G! may be determined
Consider a crystalline aggregate of single phase monoc
tals having random orientation. The determination of t
stress or strain distribution in the assemblage of such a p
crystalline aggregate with respect to an external load can
established for two extreme cases: that is, by equating ei
the uniform strain in the polycrystalline aggregate to the
ternal strain or alternatively the uniform stress to the exter
stress. The former scheme is called the Vo
approximation18 and the latter is called the Reus
approximation.19 It is evident that the Voigt and Reuss a
sumptions are true only when the aggregate concerne
made up from isotropic crystals. If one is to calculate t
average isotropic elastic moduli from the anisotropic sin
crystal elastic constants, one finds that the Voigt and Re
assumptions result in the theoretical maximum and the m
mum values of the isotropic elastic moduli, respectively. F
specific cases of orthorhombic lattices, the Reuss sh
modulus (GR) and the Voigt shear modulusGV are

GR

5
15

4~s111s221s33!24~s121s131s23!13~s441s551s66!
,

~12!

and

GV5 1
15~c111c221c332c122c132c23!

1 1
5~c441c551c66!, ~13!

and the Reuss bulk modulus (BR) and the Voigt bulk modu-
lus (BV) are defined as

-

the

FIG. 5. The projections in different planes of the directional dependent b
modulus for TiSi2 . The continuous lines are obtained from the experimen
bulk modulus of Nakamura~see Ref. 2!; the dot dashed line represents th
GGA results and the dotted line represents the LDA result:~a! along theab
plane,~b! along theac plane, and~c! along thebc plane.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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Downloaded 10 Fe
TABLE III. The isotropic bulk modulus~B in Mbar! and shear modulus~G in Mbar! for polycrystalline TiSi2
obtained from the single crystal elastic constants using Voigt, Reuss and Hill’s approximations. The Yo
modulus~E in Mbar! and the Poisson’s ratio~n! are estimated from Hills approximation.

BR BV BH GR GV GH E n

LDA 1.569 1.591 1.581 1.357 1.436 1.396 3.236 0.159
GGA 1.419 1.450 1.435 1.187 1.258 1.219 2.849 0.169
Expa 1.468 1.509 1.489 1.129 1.209 1.169 2.781 0.188
Expb

¯ ¯ 1.26 ¯ ¯ 1.031 2.556 0.24
Ti ¯ ¯ 1.073 ¯ ¯ 0.434 1.146 0.322
Si ¯ ¯ 0.988 ¯ ¯ 0.663 1.625 0.226

aCalculated from the single crystal elastic constants of M. Nakamura~see Ref. 2!.
bPolycrystalline measurements by Rosenkranz and Frommyer~see Ref. 11!.
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BR5
1

~s111s221s33!12~s121s131s23!
, ~14!

and

BV5 1
9~c111c221c33!1 2

9~c121c131c23!. ~15!

In Eqs.~12! and~14!, thesi j are the elastic compliance con
stants. Using energy considerations Hill20 proved that the
Voigt and Reuss equations represent upper and lower li
of the true polycrystalline constants, and recommended th
practical estimate of the bulk and shear moduli were
arithmetic means of the extremes. Hence, the elastic mo
of the polycrystalline material can be approximated by Hil
average and for shear moduli it isG5 1

2(GR1GV) and for
bulk moduli it is B5 1

2(BR1BV).
The Young’s modulus,E, and Poisson’s ratio,n, for an

isotropic material are given by

E5
9BG

3B1G
and n5

3B22G

2~3B1G!
, ~16!

respectively. Using the relations above the calculated b
modulus,B, shear modulus,G, Young’s modulus,E, and
Poisson’s ratio for TiSi2 are given in Table III. In general the
large value of shear moduli is an indication of the mo
pronounced directional bonding between atoms. The ca
lated shear moduli from LDA, GGA, and experiment
single crystal elastic constants are larger than that of mos
the intermetallic compounds.4 The somewhat larger value o
G obtained from the LDA calculation compared to the GG
results indicates that LDA treats the bonding behavior
TiSi2 slightly more directional than GGA. The factor th
measures the stability of a crystal against shear is the P
son’s ratio. Our calculated Poisson’s ratio is given in Ta
III for TiSi 2 and is considerably smaller than the values
ported for most of the intermetallic compounds.4 The smaller
value of Poisson’s ratio indicates that TiSi2 is relatively
stable against shear. Pugh3 introduced the quotient of bulk to
shear modulus of polycrystalline phases (B/G) by consider-
ing that the shear modulusG represents the resistance
plastic deformation, while the bulk modulusB represents the
resistance to fracture. A high~low! B/G value is associated
with ductility ~brittleness!. The critical value which separate
ductile and brittle materials is about 1.75. It is interesting
try to understand the microscopic origin of this empiric
parameter. Let us assume an isotropic cubic crystal and
b 2009 to 130.238.7.43. Redistribution subject to AIP
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which the Cauchy relationsc1153c12 andc445c12 are valid.
Hence the bulk modulus and shear modulus are reduced

B5 1
3~c1112c12!5 5

9c11,

and

G5H c44
1
2 ~c112c12!

5
c11

3
.

From the above relations we can arrive theB/G value of
1.67. Although this parameter is mostly applied for cub
materials, it is interesting to examine TiSi2 . TheB/G value
for the ductile Ti is 2.47, whereas for brittle elemental Si it
1.49. The calculatedB/G value for TiSi2 from our GGA
~LDA ! calculation is 1.27~1.13! and this is much lower than
that of its constituent. This result suggests that TiSi2 is rather
brittle.

The directional bulk modulus for the single crystal
calculated and compared with the corresponding experim
tal polycrystalline values in Table IV. Equations~A2!, ~A3!,
and ~A4! are exact for single crystals, but only valid as a
proximations for the polycrystals. Our calculated bulk mod
lus is found to be in good agreement with the one obtain
from the experimental elastic constants of Nakamura.2 How-
ever, comparing the experimental values of the single cry
directional bulk modulus with the experimental polycrysta
line values obtained by Peun, Lauterjung and Hinze17 from
high pressure x-ray diffraction measurements show a dif
ence of 14%. One possible origin for the discrepancy is t

TABLE IV. The isotropic bulk modulus~B in Mbar! and its upper bound
~Bunrelax in Mbar!, bulk modulus along the orthorhombic crystallograph
axesa, b, andc (Ba , Bb , andBc! for TiSi2 .

B Bunrelax Ba Bb Bc

LDA 1.569 1.591 4.189 4.434 5.788
GGA 1.419 1.450 3.636 3.975 5.620
Exp. 1a 1.468 1.509 3.671 4.123 6.017
Exp. 2b 1.269 3.180 3.300 5.590
LDA ~normalized! 3.387 3.584 4.679
GGA ~normalized! 3.251 3.554 5.025
Exp. 1 ~normalized! 3.173 3.564 5.202

aFrom Peun, Lauterjung, and Hinze~see Ref. 20!.
bCalculated from the single crystal elastic constants of Nakamura~see Ref.
2!.
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their isotropic bulk modulus was very much smaller than t
obtained from Hill’s average of bulk modulus given in Tab
III. Hence, we have normalized our linear bulk modulus u
ing the experimental bulk modulus.17 The corresponding dat
are given in Table IV.

The bulk, shear, and Young’s moduli of TiSi2 given in
Table III are substantially higher than those of the const
ent elements and the average value based on the rule of
tures. The large elastic modullus of TiSi2 is due to stronger
directional bonding between Si as well as that between
and Si. On the other hand, the Poisson’s ratio for TiSi2 is
much smaller than those of the constituent elements and
average value based on the rule of mixtures. Poisson’s r
is associated with the volume change during uniaxial de
mation. If n50.5, no volume change occurs during elas
deformation. The lown value for TiSi2 means that a large
volume change is associated with its deformation. In ad
tion, Poisson’s ratio provides more information about t
characteristics of the bonding forces than any of the ot
elastic constants.21 It has been proved thatn50.25 is the
lower limit for central-force solids and 0.5 is the upper lim
which corresponds to infinite elastic anisotropy.22 The lown
value ~substantially smaller than 0.25! for TiSi2 indicates
that the interatomic forces in the compound are noncen
In support of the above view point the ratiosc23/c44,
c31/c55, andc12/c66 obtained from the Cauchy relations d
viate considerably from unity.

A. Equation of state studies

We have also calculated the equation of state~the pres-
sure versus volume! by taking the volume derivative of th
fitted total energy obtained from our LDA and GGA calc

FIG. 6. Equation of state for TiSi2 from LDA and GGA calculations. The
arrow indicates the experimental equilibrium volume.
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lation; the results are shown in Fig. 6. We cannot comp
them with the experiment since there are no high press
data available for TiSi2 . The bulk modulus and its pressur
derivative for TiSi2 , obtained by fitting the total energ
curve to the universal equation of state,23 yield 1.565 Mbar
and 4.4 in our LDA calculations and 1.392 Mbar and 4.3
our GGA calculation, respectively. These bulk modulus v
ues are found to be in good agreement with the one obta
from the calculated single crystal elastic constants@using Eq.
~A1!# given in Table IV, namely 1.569 and 1.419 Mbar.

V. ELASTIC ANISOTROPY

It is well known that microcracks are induced in ceram
ics owing to the anisotropy of the coefficient of thermal e
pansion as well as elastic anisotropy.24 Hence it is important
to calculate elastic anisotropy in structural intermetallics
order to understand these properties and hopefully
mechanisms which will improve their durability. Essential
all the known crystals are elastically anisotropic, and
proper description of such an anisotropic behavior has, th
fore, an important implication in engineering science as w
as in crystal physics. The shear anisotropic factors provid
measure of the degree of anisotropy in the bonding betw
atoms in different planes. The shear anisotropic factor for
$100% shear planes between the^011& and^010& directions is

A15
4c44

c111c3322c13
. ~17!

For the $010% shear planes between^101& and ^001& direc-
tions it is

A25
4c55

c221c3322c23
, ~18!

and for the$001% shear planes between^110& and ^010& di-
rections it is

A35
4c66

c111c2222c12
. ~19!

The shear anisotropic factors obtained from our theoret
studies along with the ones obtained from the experime
values are given in Table V. For an isotropic crystal t
factorsA1 , A2 , andA3 must be one, while any value smalle
or greater than unity is a measure of the degree of ela
anisotropy possessed by the crystal. It is interesting to n
that the experimental shear anisotropic factors show a hig
degree of anisotropy than the values obtained from LDA
well as GGA calculations~Table V!. This shows that theory
TABLE V. The shear anisotropic factorsA1 , A2 , A3 , andAG ~in %!, AB ~in %! and compressibility anisotropy
factorsABa andABc for TiSi2 obtained from LDA, GGA calculations, and the experimental study.

A1 A2 A3 AG AB ABa ABc

LDA 0.718 0.651 0.933 2.909 0.677 0.944 1.305
GGA 0.766 0.743 0.938 3.005 1.069 0.914 1.413
Exp.a 0.688 0.539 0.811 3.565 1.394 0.890 1.459

aCalculated from the single crystal elastic constants of Nakamura~see Ref. 2!.
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predicts a lower anisotropy in the bonding charge den
between the different planes than the experiment.

In cubic crystals, the linear bulk modulus is the same
all directions and hence, the shear anisotropy alone is s
cient to describe the elastic anisotropy. On the other ha
for orthorhombic crystals, the elastic anisotropy arises fr
the anisotropy of the linear bulk modulus in addition to t
shear anisotropy. The anisotropies of the bulk modulus al
thea axis andc axis with respect to theb axis can be written
as

ABa
5

Ba

Bb
5a

and

ABc
5

Bc

Bb
5

a

b
,

~20!

respectively. It is interesting to note that the quantitiesa and
b defined in the Appendix couple to the elastic anisotropy
the crystal when approximating the polycrystalline sam
with a single crystal. The above-mentioned shear and c
pressibility anisotropy factors were calculated and are lis
in Table V. Note that for these parameters, a value of
indicates elastic isotropy and any departure from one co
sponds to a degree of elastic anisotropy. Alternative
Chung and Buessem introduced25 a concept of percent elasti
anisotropy which is a measure of elastic anisotropy p
sessed by the crystal under consideration. The percen
anisotropy in compressibility and shear are defined as

AB5
BV2BR

BV1BR

and

AG5
GV2GR

GV1GR
,

~21!

respectively, whereB andG are the bulk and shear modul
and the subscriptsV and R represent the Voigt and Reus
bounds. For these two expressions, a value of zero repre
elastic isotropy and a value of 1~100%! is the largest pos-
sible anisotropy. The percentage of bulk and shear aniso
pies are listed in Table V. Clearly, the calculated elastic c
stants exhibit less elastic anisotropy than the experimen
reported elastic constants.2

The above defined shear moduli and bulk moduli are
sufficient to describe the elastic behavior of a crystal co
pletely. A surface construction that is useful in practice

FIG. 7. Illustration of directional dependent Young’s modulus of TiSi2 : ~a!
calculated from LDA elastic constants,~b! from GGA elastic constants, an
~c! from the experimental elastic constants of Nakamura~see Ref. 2!.
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one that shows the variation of Young’s modulus with dire
tion. The direction dependent Young’s modulus~E! for
orthorhombic crystals can be defined26 as

1

E
5 l 1

412l 1
2l 2

2s1212l 1
2l 3

2s131 l 2
4s22

12l 2
2l 3

2s231 l 3
4s331 l 2

2l 3
2s441 l 1

2l 3
2s551 l 1

2l 2
2s66, ~22!

wheresi j are the usual elastic compliance constants andl 1 ,
l 2 , andl 3 are the direction cosines in any arbitrary directio
From the above relation the estimated direction depend
Young’s modulus for TiSi2 , using the elastic complianc
constant obtained from our LDA and GGA calculations a
the experimental result,2 are shown in Fig. 7. The elasti
anisotropy in TiSi2 is clearly visible from Fig. 7. It should be
noted that the overall topology of the Young’s modulus s
face is similar in all three cases. However, due to the und
estimation of the volume by LDA, it follows that the est
mated Young’s modulus in different directions is larger th
those obtained from GGA calculation as well as from expe
mental studies. In order to have a better understanding of
origin of the changes in Young’s modulus along differe
directions we have also given Young’s modulus along
ab, ac, andcb planes in Fig. 8. From this figure one can s
that both LDA and GGA predict that Young’s modulus
more isotropic than that found experimentally.

The experimentally observed27 anisotropy in the resistiv-
ity for different crystallographic orientations was found to
smaller than 20%. Our calculated anisotropy of Young
modulus along different crystallographic orientations
found to be higher than 40%. This result indicates that Ti2

is elastically more anisotropic than its electronic transp
properties. The elastic constantsc11 and c33 are important,
among others, because they are related to the deforma
behavior and atomic bonding characteristics of transit
metal silicides. It can be seen from Table II thatc33.c11 for
TiSi2 . The implication of this is that the atomic bonds alon
the $001% planes between nearest neighbors are stronger
those along the$100% plane. By considering the bulk modu
lus as a measure of the average bond strength and s
modulus as a measure of the resistance to a change in
angle by an external force, Tanakaet al.28 proposed thatG/B
represents the relative directionality of the bonding in t
material. The value ofG/B for TiSi2 is larger than that of Ti
and Si, indicating that the directionality of the bonding
TiSi2 is stronger than that of its constituents.

FIG. 8. Projections of the directional dependent Young’s modulus in diff
ent planes for TiSi2 . The continues lines are obtained from the experimen
elastic constants of Nakamura~see Ref. 2!, the dot-dashed line represen
the GGA results, and the dotted line represents the LDA result:~a! along the
ab plane,~b! along theac plane, and~c! along thebc plane.
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VI. CHEMICAL BONDING ANALYZED FROM CHARGE
DENSITY AND DENSITY OF STATES STUDIES

The total, site and angular momentum decomposed D
of TiSi2 are shown in Fig. 9. The total DOS shows that the
is a deep valley close to the Fermi level (EF) and this valley
is referred to as a pseudogap. This pseudogap indicate
presence of covalent bonding in TiSi2 . Quite often the
pseudogap separates the bonding states from the
bonding/nonbonding states. There exists a correlation
tween structural stability and the position ofEF with respect
to the pseudogap.29 From Fig. 9 we observe that the Ferm
level falls below the pseudogap in TiSi2 . This indicates that
not all the bonding states are filled and some extra elect
are required to reach maximum stability in this compou
This may be the reason for the presence of an orthorhom
C49 metastable phase at low temperatures.

Considerable attention has been focused on TiSi2 in or-
der to understand its bonding properties.30,31 To gain more
insight into the bonding behavior of TiSi2 we have given the
charge density contour plots of TiSi2 in the 010 plane in Fig.
10. The interesting aspect of this figure is the presence
strong directional bonding between the Si atoms. In t
plane each face centered Ti atom is surrounded by six
atoms. There is only a weak directional bonding between
and Si. The charge around the Ti sites is moved towards
Si atoms and this is consistent with the larger electronega

FIG. 9. Angular momentum and site decomposed electron density of s
of TiSi2 .
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ity of Si compared to Ti. Our site decomposed DOS sho
that the density of states at the Fermi level is dominated
Ti d states. Even though considerable amount of Sis andp
states are present in the occupied part of the DOS, t
contribution at the Fermi level is very small. The DO
curves also show that the larger part of the broad Tid DOS
is aboveEF . The overall topology of our DOS curves ar
found to be in good agreement with the X-ray photoemiss
spectrum.30

As already mentioned the charge density contours in F
10 show that there is a strong directional bonding betw
the Si atoms. Further, our angular momentum and site
composed DOS given in Fig. 9 show that the Si 3s states are
mixed with Si(3p) states over the whole range of the co
duction band, indicating large Si(3s) – Si(3p) hybridization.
This observation is important for the bonding in TiSi2 and is
in agreement with the conclusion arrived from the soft X-r
emission spectroscopy~SXES! study.32 So far little attention
has been given to understanding the role of Si(3d) states on
the chemical bonding in TiSi2 . From the SXES study it was
concluded32 that a finite amount of Si(3d) states is present in
the valence band. In order to confirm this we have a
shown the Si(3d) DOS in Fig. 9. From this figure it is clea
that a considerable amount of Si(3d) states is present in th
energy region 0–5 eV belowEF in TiSi2 .

The calculated value of N(EF) for TiSi2 from our GGA
treatment is 2.47 state/~eV cell!. This value is found to be in
good agreement with the value of 2.42 states/~eV cell! ob-
tained from an linearly augmented plane wave~LAPW!
calculation.33 Recently Affronteet al.34 estimated the renor
malized electronic density of states at the Fermi level to
2.85 states/~eV cell! using low temperature specific he
measurement. From this we calculate an electron–pho
mass enhancement factor of 0.152. This suggests a low v
of electron–phonon coupling constant, which may expl
why no superconductivity has been observed for TiSi2 , al-

tes

FIG. 10. The valence charge density for TiSi2 in the 010 plane. 90 contours
have been drawn between the charge distribution 0.01 and 0.1 electrons3.
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though superconductivity has been observed in structur
related systems like CoSi2 , TaSi2 , and NbSi2 .

VII. CALCULATION OF DEBYE TEMPERATURE

As a fundamental parameter, the Debye temperature
relates with many physical properties of solids, such as s
cific heat, elastic constants, and melting temperature. At
temperatures the vibrational excitations arise solely fr
acoustic vibrations. Hence, at low temperatures the De
temperature calculated from elastic constants is the sam
that determined from specific heat measurements. One o
standard methods to calculate the Debye temperature (uD) is
from elastic constant data, sinceuD may be estimated from
the averaged sound velocity,vm , by the equation35

uDp
5

h

k F 3n

4p S NAr

M D G1/3

vm , ~23!

whereh is Planck’s constant,k is Boltzmann’s constant,NA

is Avogadro’s number,r is the density,M is the molecular
weight andn is the number of atoms in the molecule.
Table VI the density of TiSi2 obtained from the experimenta
and theoretical data is given. Because of the underestim
volume in LDA the calculated density is higher than t
experimental value. The average wave velocityvm in the
polycrystalline material is approximately given by35

vm5F1

3 S 2

v t
3 1

1

v l
3D G21/3

, ~24!

wherev l and v t are the longitudinal and transverse elas
wave velocity of the polycrystalline material and are o
tained ~using the polycrystalline shear modulusG and the
bulk modulusB! from Navier’s equation as follows:36

v l5
S B1

4G

3

r
D 1/2

and

v t5S G

r D 1/2

. ~25!

TABLE VI. The density~r in g/cm3!, longitudinal, transverse, average ela
tic wave velocity (n l , ns , nm in m/s!, and the Debye temperature from th
average elastic wave velocity obtained from polycrystalline elastic mod
(uDp in K! and single crystal elastic constants (uDs in K!.

r n l ns nm uDp uDs

LDA 4.2230 9028 5750 6321 788 775
GGA 4.0471 8694 5487 6038 742 722
Exp.a 4.0937 8629 5345 5894 727 700
Exp.b ¯ ¯ ¯ ¯ ¯ 664
Exp.c ¯ ¯ ¯ ¯ ¯ 560–588

aCalculated from the single crystal elastic constants of Nakamura~see Ref.
2!.

bSpecific heat measurements by Affronteet al. ~see Ref. 34!.
cSingle crystal resistivity measurements by Hirano and Kaise~see Ref. 40!.
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TheuD can also be obtained from the average sound velo
obtained by integrating the elastic wave velocities over va
ous directions of the single crystal from theci j using the
following relation:37

uDs5
h

k S 9N

4pVD 1/3

r21/2a0
21/3, ~26!

whereh, k, andr have the usual meaning described in E
~23!, N is the number of atoms in one molecule,V is the
volume of the unit cell, anda0 is a function which represent
the average velocity of elastic waves in different directio
of the single crystal. Joardaret al.37 derived the explicit ex-
pressions to calculate this function for orthorhombic cryst
for ten different directions using

a05@38976~ f A1 f B!115118f C147628f D

138788~ f E1 f F!244352~ f G1 f H!#/105840,

wheref A , f B , f C , f D , f E , f F , f G , and f F are the values of
the functiona0 in the~100!, ~010!, ~001!, ~110!, ~011!, ~101!,
~)10!, ~1)0!, ~01)!, and ~10)! directions, respectively
These values can be obtained from the single crystal ela
constants using the explicit expressions for different dir
tions given by Joardaret al.37 The reliability of the calcu-
lated value ofuDs

depends upon the number of directio
considered in our calculations. Joardaret al.37 showed that
ten different directions give reasonably good values of
Debye temperature. Affronteet al.34 estimated the Debye
temperature of TiSi2 from the low temperature specific he
measurements and the value given in Table VI is lower th
the one obtained from the experimental as well as our th
retical elastic constants. By fitting the temperature dep
dence of the resistivity with a Bloch–Gru¨neisen curve, Tho-
maset al.27 estimated a Debye temperature of 535610 K. It
should be noted that the specific-heat measurements38 in the
temperature range 100–500 K gave an estimation ofuD

5510 K. From these results it is clear that the Debye te
perature of TiSi2 increases with decreasing temperature. T
conclusion is consistent with the general behavior of a
creasing Debye temperature with increasing temperatur
intermetallic compounds.39 Further, only the acoustic
branches of phonons are active at low temperatures
hence, the estimateduD from our elastic constants is vali
for low temperatures. It is interesting to note that the Deb
temperature obtained from Eq.~24! is closer to the experi-
mental value than the one obtained often from Eq.~23! given
in Table VI. From temperature dependent electrical resis
ity measurement, Hirao and Kaise40 found that the Debye
temperature for TiSi2 has a minimum value of 560 K alon
the ^001& direction and a maximum value of 588 K along th
^010& direction. It should be noted that theuD obtained from
elastic constants is always higher than that obtained fr
electrical resistivity studies. The discrepancy may be pa
ascribed to its temperature dependence.

VIII. CONCLUSIONS

We have used the FLMTO method to perform a set
first principles, self-consistent, total energy calculations
determine the equations of state and equilibrium structu

s
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parameters of TiSi2 in the orthorhombic C54 structure. Th
calculated lattice constants are in excellent agreement
the experimental data when we use the GGA for the
change and correlation potential. We also calculated
strain energies for nine different distortions of TiSi2 using
LDA as well as GGA in the theoretically optimized cryst
structure in order to calculate elastic constants. Overall
elastic constants obtained from the GGA calculations
found to be somewhat in better agreement with the exp
mental values than those obtained from LDA calculatio
From the elastic constants, the bulk moduli along the cr
tallographic axes are calculated and are compared with
perimental values. The comparison of directional depend
bulk modulus and Young’s modulus obtained from the LD
and GGA calculations with experimental results show t
the GGA considerably improves the elastic properties
TiSi2 . Using Hill’s approximation, the ideal polycrystallin
aggregates bulk modulus, shear modulus, Young’s modu
and Poisson’s ratio, are calculated. The Poisson’s ratio
TiSi2 was found to be lower than that of ordinary metals a
alloys and this shows clear deviations from central forces
this material. We also discussed the chemical bonding
TiSi2 through the angular momentum and site decompo
density of states, charge density analysis, and elastic an
ropy, of this material. From the theoretically obtained po
crystalline shear moduli and bulk moduli as well as the
erage elastic wave velocity over different directions, t
Debye temperature was calculated and found to be in g
agreement with the experimental values.
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APPENDIX: CALCULATION OF BULK MODULUS
ALONG CRYSTALLOGRAPHIC AXES

From pressure dependent lattice parameter meas
ments it is easy to obtain the bulk modulus of a solid alo
different crystallographic axes. It is however simpler to c
culate the bulk modulus along the crystallographic axes fr
the single crystal elastic constants. From elastic theory,
considering the definition of the bulk modulus where t
strains perpendicular to the stress directions are all equal~the
case of response to a hydrostatic pressure! one will arrive at

Brelax5
L

~11a1b!2 , ~A1!

where L5c1112c12a1c22a
212c13b1c33b

212c23ab.
For tetragonal and hexagonal crystalsa51 and for cubic
crystalsa5b51. For orthorhombic crystalsa andb can be
defined as
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a5
~c112c12!~c332c13!2~c232c13!~c112c13!

~c332c13!~c222c12!2~c132c23!~c122c23!
,

and

b5
~c222c12!~c112c13!2~c112c12!~c232c12!

~c222c12!~c332c13!2~c122c23!~c132c23!
.

The single crystal isotropic bulk modulus (Brelax) obtained
from Eq. ~A1! is the same as the one obtained from expe
mental pressure studies on a single crystal, where the re
ation ofa/b andc/b as a function of pressure is considere
Interestingly, this value is exactly the same as the one
tained from the Reuss average i.e., the lower bound of
bulk modulus! given in Table III. In general, to minimize the
amount of computations, the bulk modulus of the orthorho
bic system will be obtained by varying the volume for fixe
a/b andc/b values. This will always give an upper bound
the bulk modulus (Bunrelax). This value can be obtained from
Eq. ~A1! by substitutinga5b51. TheBunrelaxvalue obtained
from Eq. ~A1!, using the above procedure, is given in Tab
IV and is exactly the same as one obtains from Voigt av
ages given in Table III. The bulk modul along thea,b andc
axis are defined as

Ba5a
dP

da
5

L

11a1b
, ~A2!

Bb5b
dP

db
5

Ba

a
, ~A3!

Bc5c
dP

dc
5

Ba

b
, ~A4!

wherea andb are defined as the relative change of theb and
c axis as a function of the deformation of thea axis. Using
the above relations, the linear bulk modulus can be obtai
from our calculated single crystal elastic constants.
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