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A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals
from first principle calculations is described. This is applied for J7&id we calculate the elastic
constants using a full potential linear muffin-tin orbital method using the local density
approximation(LDA) and generalized gradient approximatig8GA). The calculated values
compare favorably with recent experimental results. An expression to calculate the bulk modulus
along crystallographic axes of single crystals, using elastic constants, has been derived. From this
the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear
modulus, Young’s modulus, and Poisson’s ratio for ideal polycrystalline, @& also calculated

and compared with corresponding experimental values. The directional bulk modulus and the
Young's modulus for single crystal Tisare estimated from the elastic constants obtained from
LDA as well as GGA calculations and are compared with the experimental results. The shear
anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal
elastic constants. From the site and angular momentum decomposed density of states combined with
a charge density analysis and the elastic anisotropies, the chemical bonding nature between the
constituents in TiSiis analyzed. The Debye temperature is calculated from the average elastic wave
velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities
in different directions of the single crystal. The calculated elastic properties are found to be in good
agreement with experimental values when the generalized gradient approximation is used for the
exchange and correlation potential. ¥98 American Institute of Physics.

[S0021-897¢98)03821-3

I. INTRODUCTION the bonding and structural stability. It has also been noticed

relate to various fundamental solid-state properties such as .
: . : . prop ratio between the bulk and shear modulBgG, for poly-
interatomic potentials, equation of state, and phonon spectra.

Elastic properties are also linked thermodynamically to thecrystalline phases as a measure of fracture/toughness in met-

specific heat, thermal expansion, Debye temperature, meltinﬁ)s_' A high (low) B/G value is associated with ductility
point, and Grueisen parameter. Plastic properties of materi- r_lttlenesss, and we will elaborate on this empirical relation-
als are also closely associated with the shear moduli alongiP later.

the slip planes of mobile dislocations, since these disloca- Elastic constants for most pure metals are available over
tions can dissociate into partials with a spacing determine@ wide range of temperature in the literature. In contrast, data
by the balance between the fault energy and the repulsivior alloys and intermetallic compounds are much more lim-
elastic force. The elastic constants determine the response ié¢d. In particular, single crystal elastic constants, which are
the crystal to external forces, as characterized by bulk moduequired in the basic studies mentioned above, are not avail-
lus, shear modulus, Young’s modulus, and Poisson’s raticable except for a few intermetallic compourfdstforts have
and obviously play an important part in determining thebeen made to calculate the elastic constants theoretically
strength of the materials. Values of elastic constants providgom so-called first principles calculations and, although the
valuable information about the bonding characteristic behulk modulus has been calculated for various materials, cal-
tween adjacent atomic planes and the anisotropic character gfj|ations of the other elastic constants are relatively scarce.
Among these most of the attempts have been made to calcu-
dElectronic mail: P.Ravindran@fysik.uu.se late the elastic constants of cubic matefidtem first prin-
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ciples, while only very few have been made to calculate thdABLE I. The equilibrium structural parameters for TiSibtained from the

elastic constants of low symmetry systems such a DA and GGA calculations. The lattice parametars, andc are in A and
. . e equilibrium unit cell volume\() is in A,

tetragonal and hexagon@lsystems. The main problem in

estimating elastic constants from first principles is not only a b c alb c/b Vo

he requirement of rate methods for calculating the totat

the requirement of accu ate. ethods for calculat g.t e qtduLDA 508 474 853 171 180 32674
energy but also the complicated heavy computations in-g;a 821 481 864 171 180  340.95

volved in the calculation of elastic constants. Further, if the gxperimert 827 480 855 1.72 178  339.30
symmetry of the system is reduced, the number of indepen=
dent elastic constants increases and hence a larger numbergPm Ref. 11.
distortions is required to calculate the full set of elastic con-

stants. Because of the above facts no attempt has, to Otﬁose reported from the experimental studies. In Sec. V we

knowledge, yet been made to calculate the elastic constan ) : L .
. X . .. discuss the elastic anisotropy in TiShrough shear anisot-
of low symmetric systems with orthorhombic, monoclinic, g .
L7 ropy factors, bulk modulus anisotropic factor, and percentage
and triclinic structures. ; . : .
The elastic behavior of a completely asvmmetric mate elastic anisotropy. In Sec. VI the nature of chemical bonding
b y asy in TiSi, has been investigated through the elastic anisotropy,

Hellie §pec:|f|¢d i 21. EJEfEE TEEI: e_Iastlc constants, Wh”esite and angular momentum decomposed density of state
for an isotropic material, the number is 2. In between thes

?DOS), and charge density analysis. In Sec. VII we have

limits the necessary _ngmber IS determlnec_j by the Symmetr}éalculated the Debye temperature from the elastic constants
of the material, and it is 9 for orthorhombic crystals. These

nine independent elastic constants are usually referred to %{ using the average elastic wave velocity as well as the
P y . egration of elastic wave velocity in a different direction of
C11s C22, Ca3, Caa, Css, Ceg, C12, C13, ANdC,3. A theoretical

=2 : : the single crystal. The important conclusions derived from
treatment of the elasticity of orthorhombic systems is thus

derabl ivolved than f bic. h | (iur calculations are summarized in Sec. VIII. The explicit
considerably more involved than for cubic, hexagona, an xpressions to calculate bulk modulus along crystallographic
tetragonal structures which have three, five, and six indepe

q lasti velv. Th K of calculati "irections from elastic constants for orthorhombic crystals as
ent elastic constants, respectively. The task of caleulating,q a5 the calculated values are given in the Appendix.
the elastic constants of orthorhombic crystals becomes even

more difficult when realizing that the strains needed to cal-
culate some of them give rise to a geometry with very low!!- DETAILS OF CALCULATIONS
symmetry. Possibly this is the reason why so far no theoreta. Crystal structure aspects of TiSi

ical work on elastic constants of orthorhombic systems based _ . ) .
on first principle methods have been published. TiSi, crystallizes in the C54 type of structurspace

24 o
Titanium silicides, with their distinct properties of low group FdddD3;,) congruently at 1480 °C from the melt and

density, high thermal and electrical conductivity, strong ad—the room temperafure lattice parameters are presented in

hesion with silicon substrates, and high corrosion resistanc-gable | There are 16 silicon and eight fitanium atoms in the

to caustic gases, are mainly applied in very large scale in'[elJnit cell at 1@ (1/3 0 0 and & (0 0 0 Wyckoff positions,

gration (VLSI) circuits, such as interconnects, gate metalli-eSPECtively. The crystal structure of TiSin the C54

zation, and Schottky barriers. Further, the low density, high(QF24) s(;ruprture IS ShOI‘INn |n_|!:|g. L (Ijn t.lh's figure the t'tatl'd
creep strength, high melting point, superior oxidation resisi UM and siiicon as wetl as silicon and stiicon are connecte

tance, high hardnegs=850 Hv), and flow stresses of more ]E:)y bolnds. _'It'he ;'rr]"t lceII of T||(§|(;:%nta|ns 24| ?toms orh(?'%ht
than 1200 MPa for TiSi makes this compound a potential ormufa units with close-packed hexagonal fayers, which are

aero-space engineering material. All nine independent elast%taCked on top of each other in such a way that the Ti atoms

constants of the orthorhombic C54 structure JiBave re- of adja?‘?f‘t. Iayer§ avoid closg contdctn the transitiqn
cently been determined experimentdlfhis motivated us metal d's'.l'c'des with Cl';(MOS.'Z) and C40 (C@". NbSp

to calculate all nine independent elastic constants and relateaa1d Tag)) structures, the silicon atoms remain closely
properties of TiSi from first principle electronic structure
calculations. Because of the special significance of the iso-
tropic bulk modulus, shear modulus, Young's modulus, and
Poisson’s ratio for technological and engineering applica-
tions, we have also calculated these quantities from the elas-
tic constants.

The remainder of the paper is organized as follows: In
Sec. Il we describe the underlying theory for the calculation
of elastic constants of orthorhombic crystals as well as the
computational aspects of our study. In Sec. Il we have com-
pared our theoretically obtained single crystal elastic con-
stant data with the experiment. Section IV deals with the
polycrystalline bulk modulus, shear modulus, Youngs modu-

lus, and PqiSSOH'S ratio, USing the singlg CryStaI elastic COMNFIG. 1. The C54 type crystal structure of TiSiThe black balls represents
stants obtained from our present numerical work, as well age Ti atoms and the white balls represent Si atoms.

2
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-0.854 T T T from our LDA as well as GGA calculations along with the
q 5 = . . . oy
& Experimental b= 17813 experimental valuest The theoretically estimated equilib-
\ eoretical ¢/b = 1.7954 A A A A
-0.855 | . rium volume, which neglects zero-point motion and thermal
. expansion, is underestimated in our LDA calculation by
-0.856 | . 3.7%, relative to the experimental value and overestimated
by 0.5% in our GGA calculation. From Table | we have thus
_0.857 F i found that overall the equilibrium lattice parameters obtained
\J\ / from our GGA calculations are in better agreement with the
L M S experiments than those obtained from our LDA calculations.
176 178 180 182
c/b
! ! ! C. Calculation of elastic constants
Experimental a/b = 1.7229
-0.8545 1 Theoretical a/b = 1.7064 The face centered orthorhombic phase of Tigis three
= ] lattice parameters, b, andc, with the Bravais lattice vectors
$-0.8555 | - .
< of the matrix form
&~
08565 |- -
4 ‘ / 0 1 c/b
-0.8575 |, }// - R=1/2| alb 0 c/b
el . alb 1 0
170 172 174 176 - . _— : 12
alb The full potential linearized muffin-tin orbitaFPLMTO)
' ' ' ' method allows total energy calculations to be done for arbi-
Experimental V, = 84.8243 A”/cell trary crystal structures. We can therefore apply small strains
060 f Theorstical V, =85.2377 Alleell ] to the equilibrium lattice, determine the resulting change in
' the total energy, and from this information deduce the elastic
-0.70 | 1 constants. The elastic constants are identified as proportional
\ to the second order coefficient in a polynomial fit of the total
-0.80 . .//. 1 energy as a function of the distortion parameséf We de-
- termine linear combinations of the elastic constants by

FIG. 2. The structural optimization curves for Ti%iom GGA calculations.
The experimental structural parameters are taken from Rosenkranz al
Frommeyer(see Ref. 11 AE represent the total energy added by 5737

Ry/cell.

bonded in sheets normal to the stacking pl&helowever,
for the C54 (TiS}) structure, the Si—
with Ti atoms as shown in Fig. 1. The breaking of the Si—

70 80 a0 100 110
Volume (A%cell)

straining the lattice vectoR according to the rul&®R’=RD.
Here R’ is a matrix containing the components of the dis-
torted lattice vectors anb is the symmetric distortion ma-
r;[éix, which contains the strain components. We shall con-
sider only small lattice distortions in order to remain within
the elastic limit of the crystal. In the following we shall
briefly list the relevant formulas needed to obtain the elastic
constants of orthorhombic crystals. The internal energy of a

crystal under straing, can be Taylor expanded in powers of

Si chain is interrupted e rain tensor with respect to the initial internal energy of
Sithe unstrained crystal in the following way:

chains qualitatively implies increased metallic character and

this may be the reason for the elevated thermal and electrical
conductivity in TiSp, among the transition metal disilicides.

B. Structural optimization from total energy studies

Before performing calculations to obtain the elastic con-

E(V,8)=E(Vo,0)+V,

2 71§ i

+0(8%). (1)

+ 1/2; Cij 8i&i 6,

stants we have first optimized the structural parameters ofhe volume of the unstrained system is denotgd and
TiSi, using both the local density approximatiObDA) as  E(V,,0) is the corresponding total energy. We have used the
well as the generalized gradient approximati@GA). In  Voigt notation in the equation above which replagesyy,
doing this we first adopted the experimengb and c/b 27, yz, xz, andxy by 1, 2, 3, 4, 5, and 6, respectively. When
ratios and optimized the equilibrium volume. We then usedntroducing the Voigt notation, one has to remember that the
the theoretical equilibrium volume and optimized the ratio§'s are symmetric. To account for this, we introduced the
a/b as well asc/b. The structural optimization, total energy factor &;, which takes the value 1 if the Voigt index is 1, 2,
curves for TiSj obtained from our GGA calculations are or 3 and the value 2 if the Voigt number is 4, 5, or 6. In the
shown in Fig. 2. From this figure it is clear that the equilib- equation aboveys; is an element in the stress tensor. The
rium structural parameters obtained from our GGA calcula-Taylor expansion of the total energy should be done in terms
tions are in very good agreement with the correspondingf Lagrangian coordinateg which relate the Eulerian coor-
experimental values. dinatesé by the equationg=6+366. Since é is small the

In Table | we list the calculated and experimental valuesapproximationp= & is valid (the effect in the present case is
of the equilibrium lattice parameters and volume obtainedhe third decimal
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Since we have nine independent elastic constants,

need nine different strains to determine these. The nine dis-
tortions used in the present investigation are described be-

low. The first three elastic constants,, C,,, andcss, are
obtained by the following distortion matricés;, D,, and

D3, respectively, and correspond to straining the lattice

along thex, y, andz axis, respectively. These distortion ma
trices are written as

1+6 0 O
D,=( O 1 0],

0 01

1 0 0
D,=({0 1+56 O

0 O 1

and

1 0 O
D;,=({0 1 O

0 0 1+56

In all these distortions, the symmetry of the strained la

tice still remains orthorhombic. However, the volume is
changed by the distortion. The energy associated with these
distortions can be obtained by putting the values of the strain

matricesD;, D,, andD5 in Eq. (1) and we obtain

— ‘u o
E(V16) E(V010)+V0 7-15+ 2 0 ’ (2)
_ Ca2
E(V15) E(V010)+V0 7-25—"_ 2 o ! (3)
and
_ G
E(V,8)=E(Vo,0)+Vo| 136+ =~ &%, (4)

respectively. From these relations we obtain the elastic co
stantscy;, C,,, andcgz. Using the following volume con-

serving monoclinic shear distortions,
—2—,31 0 0
(1-6°*
1 S
D4= (1_52)1/3 (1_52)1/3 )
1) 1
0 (1_52)1/3 (1_52)1/3
1 S
(1-)T° (1-3)™
1
b=l % mmam °
o 1
1-om 1™

and
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we 1 S
(1_52)1/3 (1_52)1/3 0
) 1
De= (1_52)1/3 (1_52)1/3 0 )
1
- O 0 mﬁ

we obtain the shear elastic constaots, 55, andcgg. The
energy corresponding to the distortiddg, Ds, andDg can
be written as

E(V,8)=E(V0,0)+ Vo(2746+ 2C446%), (5

E(V,8) =E(V,,0) + V(2 755+ 2C5562), (6)
and

E(V,8)=E(V,,0) + V(2766+ 2Ce662), (7)

respectively. The relations above give thg, Cs5, andcgg

elastic constants directly. We are left with three more elastic

constants,, Cq3, andc,3. These elastic constants can be

calculated by means of volume conserving orthorhombic dis-
ttortions of the following types:

1+6
om0 0
1-¢6
b=l O Tmem 0|
0 1
(1-69)™
1+6
FEr 0
1
= 0 0
Po -
0 0 1-6
n- (1_52)173
and
1
FEra 0
1+¢6 0
Po™ T+
1-6
0 ° aTom

Among these three distortionB;; increases and decreases

b with an equal amount and remains constant. ThBg
distortion increasea and decreaseswith an equal amount
andb is kept constant. ThB4 distortion, finally increaseb

and decreases with an equal amount and remains con-
stant. Hence, the resulting symmetry of the strained object
from theD-, Dg, andDy distortions is the same as that of
the unstrained lattice and in addition the volume is conserved
in these distortions.
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The energy associated with these distortions can be olihe equilibrium volumea/b, c/b, and the strain®,, D,,
tained by putting the values of the strain matrié®s, Dg, D;, D, Dg, and Dy, we have used 64 points in the

andDy into Eq.(1) and are irreducible wedge of the first Brillouine zondéBZ) of the
face centered orthorhombic lattice. As mentioned earlier, the
E(V,8)=E(Vo,00+ Vo[ (11— 72)8 application of theD,, Ds, and Dg strains on the lattice
+ 3(Cypt Cop— 2C10) 821, (8) |mpl|§s a_lowerlng of symmetr_y gnd hence we 'have .used 100
k points in the IBZ of the primitive monoclinic lattice for
E(V,8)=E(V,0)+ Vo[ (7,— 73) 8 these strains. To avoid the influence of higher order terms on
. ) the estimated elastic constants we have used very small
+ 3(C111 Ca3—2C13) 671, 9 strains, i.e., within=1.5%.
and

E(V, 5) = E(Vo,o) +V0[( Tyo— 7'3) )

+ Y(Copt Cag— 2C,9) 821, (10  Ill. COMPARISON OF SINGLE CRYSTAL ELASTIC
CONSTANTS

respectively. The relations above give the value of the elastic
constantsc;,, Cq3, and c,; with the superposition of the In Figs. 3a) and 3b) we have plotted the changes in
already calculated elastic constanots, C,,, andcss. total energy AE) versus strairs for TiSi, for the nine dif-
ferent types of distortions discussed in Sec. Il C. The results
are obtained from LDA and GGA calculations, respectively,

Using the above-mentioned strains, we have calculatedsing the corresponding theoretical equilibrium structural pa-
the total energy self-consistently by means of first principlesameters given in Table I. The elastic constagjsare ob-
electronic structure calculations, based on the density+tained by means of polynomial fits. The polynomial fit to the
functional theory and we use the all-electron full potentialpoints [dotted lines in Figs. @ and 3b)] were truncated
linear muffin-tin orbital method® The calculations of the after the third-order term. It should be noted that, to mini-
elastic constants were done at the theoretically derived equimize the errors coming from higher order terms, we have
librium lattice parameters. In the FPLMTO method, no shapaised very small distortions. We may now compare our cal-
approximation is made to the potential and the charge derculated elastic constants with the experimental elastic con-
sity; the warping terms in the interstitial region and the non-stants measured at room temperafulidhe elastic constants
spherical contribution at the sites of the nuclei are explicitlyobtained from our GGA calculations given in Table Il are
taken into account. The density and potential are expanded fiound to compare very favorably with the experimental val-
cubic harmonics inside non-overlapping muffin-tiMT) ues, and are in somewhat better agreement with the experi-
spheres and in a Fourier series in the interstitial region. Thenent than the ones obtained from LDA calculations. The
ratio between the lattice constaamtind the muffin-tin radius  deviations in the calculated elastic constants from the experi-
was kept constant for the various strains and was chosen taental values are partly due to temperature and volume ef-
be equal for both the Ti and Si MT spheres. Spherical harfects. It should also be noted that the elastic constaefts
monic expansions were carried out through,=8 for the  c43, andc,; obtained both from LDA and GGA calculations
bases, potential, and charge density. The exchange amtviate~25% from the corresponding experimental values
correlation potential was treated in the LDA using theand one possible reason is as follows. The above-mentioned
von Barth—Hedin parametrization. The LDA is in principle elastic constants are not possible to calculate straight away
only valid for slowly varying densities and is known to show from just one single distortion, but can only be obtained
an overbinding of atoms in molecules and solids. Hence, tdogether with other elastic constants. As an exampjenust
remedy this situation we have also used the GGA as prothus be calculated from distortiois;, D,, andDg. From
posed by Perdew and Wari). the corresponding equationid), (3), and(8) we see that in

The basis set was comprised of augmented lineaorder to extract;,, we must subtract the second-order co-
muffin-tin orbitals®® The tails of the basis functions outside efficient in the three equations from each other. However,
their parent spheres were linear combinations of Hankel oerrors made in calculating the differenf’s which were used
Neumann functions with nonzero kinetic energy. The basido calculate thec;, may contribute to the error in,,, pro-
contains 4, 3p, 5p, 3d, and 4 orbitals on the titanium site ducing a large deviation from the experiment. Hence, it is
and 3, 2p, 3p, 3d, and 4f for the Si site. All orbitals were more reasonable to compare the appropriate superpositions
contained in the same energy panel, with the & Ti and  of elastic constants rather than individual constants. As men-
2p of Si treated as pseudovalence states in an energy stbned earlier the superposition of elastic constants- c»»
which is different from the rest of the basis function. Further,—2c45, €1+ C33— 2C43, andcy,+ C33— 2C,5 can be obtained
we used a so-called “double basis” where we used two dif-directly from theD,, Dg, andD4 distortions, respectively.
ferent orbitals ofl, m; character each connecting, in a con- Hence, we compare these values with the experiment in
tinuous and differential way, to Hankel or Neumann func-Table Il. It is interesting to note that the deviation between
tions with different kinetic energy. The integration over the experiment and theory is drastically reduced when we com-
Brillouin zone was done using the special point sampfing pare the superposition of elastic constants rather than the
with a Gaussian width of~10 mRy. For the calculations of individual values. Hence, we conclude that for Ti%he

D. Computational details
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FIG. 3. Changes in the strain energ§H) as a function of strairié) for TiSi, from LDA (a) and GGA(b) calculations. The black circles represent the
calculated values and the dotted line is the polynomial fit. The arrows indicate the experimental A&luepresent the total energy added by 5737 Ry/cell.

deviation in elastic constants from the experimental values isvith respect to length changes in any arbitrary direction.
From the compliance constants it is possible to calculate this
property, which is related to the directional bulk modukys

within ~30% in the LDA calculations and withir-18% in

our GGA calculation.
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It is interesting to know the curvature of the total energyusing the following relation:
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TABLE II. The single crystal elastic constants;(in Mbar) for TiSi, ob-
tained from LDA as well as GGA calculations, and 5 are the percentage
of deviation of elastic constants obtained from the LDA and GGA calcula-

tions from the experimental values. 5 T
o . 02
Cij LDA 5, (%) GGA  5g(%) Exg 5 §
05
Ci1 3.772 18.8 3.260 2.6 3.175 & 5
Co2 3.411 6.4 2984 —6.8 3.204
Cas 4.253 2.9 3719 -99 4.132 . 0 s ° . 0 s 0
Cus 1.365 21.3 1.235 9.7 1.125 B(Mbar) B(Mbar) B(Mbar)
Ces 0.937 23.6 0.853 125 0.758 (a) (b (©
Ces 1.546 315 1.359 15.7 1.175
Cip 0.278 5.3 0.224 237 0.293 FIG. 5. The projections in different planes of the directional dependent bulk
Ci3 0.213 —44.5 0.265 31.1 0.384 modulus for TiSj. The continuous lines are obtained from the experimental
Cy3 0.951 105 1.055 22.6 0.860  bulk modulus of Nakamurésee Ref. 2 the dot dashed line represents the
Cyq+ Cpp— 2Cqp 6.628 14.4 5.797 0.0 5.792  GGA results and the dotted line represents the LDA resalltalong theab
Cy1+ Ca3—2C13 7.599 16.2 6.449 —1.3 6.538 plane,(b) along theac plane, andc) along thebc plane.
CostCg—2C,;  5.763 2.6 4593 18.2 5.616

From Nakamurgsee Ref. 2 from experiments of the linear compressibiftfywhere the

change in thea, b, andc lattice parameters is measured as a

function of hydrostatic pressure. The relationship between
1 5 2 the linear compressibility and the elastic constants is derived
K~ (S117+ S12t S19)l 1+ (S12+ Spo+ Sp9)13 in the Appendix and is given by Eq6A2)—(A4).

T (S19t SoatS23)1 5, (D \v. CALCULATION OF ELASTIC CONSTANTS FOR
wherel,, |,, andl; are the direction cosines. Using the POLYCRYSTALLINE AGGREGATES
above relation, the calculated bulk modulus along different 5 problem arises when single crystal samples are not
directions from the theoretical as well as experimental elaSti%vailable, since it is then not possible to measure the indi-

constants are shown in Fig. 4. For an isotropic system Wg;qq| elastic constants; . Instead, the polycrystalline bulk
will obtain a spherical shape in the directional dependent,,q,1us (B) and shear modulu¢G) may be determined.
bulk_ m_o<_julu_s. The nonspherical nature_ of the b_ulk moduluscgnsider a crystalline aggregate of single phase monocrys-
of TiSi, in Fig. 4 clearly shows the anisotropy in the bulk (515 haying random orientation. The determination of the
modulus. To compare our theoretically obtained bulk modugyess or strain distribution in the assemblage of such a poly-
Iu_s along dlffer_ent directions with experimental values ONe.rystalline aggregate with respect to an external load can be
might add that if we compensate for the volume effect of theggiaplished for two extreme cases: that is, by equating either

elastic constants we cannot conclude that the GGA calculang yniform strain in the polycrystalline aggregate to the ex-
tions are better than the LDA calculations, but they are of thgg | strain or alternatively the uniform stress to the external

same magnitude. One way of compensating for the volumeyess.  The former scheme is called the Voigt
effect is to normalize the elastic constants with the COMmeyzpproximatiol® and the latter is called the Reuss
sponding bulk moduluWe have plotted the bulk modulus approximatiort® It is evident that the Voigt and Reuss as-
in different crystallographic planes in Fig. 5. From Fig. 5 it

, sumptions are true only when the aggregate concerned is
can be clearly seen that the bulk modulus obtained from thg,,4e up from isotropic crystals. If one is to calculate the

GGA calculation is in good agreement with the experimenty erage isotropic elastic moduli from the anisotropic single

regarding both the magnitude and directional behavior. We,ysia| elastic constants, one finds that the Voigt and Reuss

have glsq calculated the bulk modulus along ahe, andc assumptions result in the theoretical maximum and the mini-

axes in Fig. 5. T_hg calculategl bulk modulus along ahb_’ mum values of the isotropic elastic moduli, respectively. For

and ¢ axes of TiS} are consistent with the ones obtained gpecific cases of orthorhombic lattices, the Reuss shear
modulus Gr) and the Voigt shear modulus,, are

Gr
(R _ 15
i A(S11F So2+ S33) — 4(S121 S13+ S23) + 3(Sgst Ss5+ See)
‘ ; (12
(a) (b) and
FIG. 4. lllustration of directional dependence of the bulk modulus. The ~ Gy=12(C11+ Cop+ C33— C12— C13— Co3)
distance between zero and any point on the elipsoid/surface is equal to the N
bulk modulus in that direction(a) calculated from LDA elastic constants, + g( Cy47+ Csst 066), (13)

(b) from GGA elastic constants, ar{d) from the experimental elastic con- .
stants of Nakamurdsee Ref. 2 AE represent the total energy added by and the Reuss bulk moduluBg) and the Voigt bulk modu-

5737 Ry/cell. lus (By) are defined as
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TABLE lll. The isotropic bulk modulugB in Mbar) and shear modulu&s in Mbar) for polycrystalline TiSj
obtained from the single crystal elastic constants using Voigt, Reuss and Hill's approximations. The Young's
modulus(E in Mbar) and the Poisson’s ratiqv) are estimated from Hills approximation.

Br By By Gk Gy Gy E v
LDA 1.569 1.591 1.581 1.357 1.436 1.396 3.236 0.159
GGA 1.419 1.450 1.435 1.187 1.258 1.219 2.849 0.169
Exp? 1.468 1.509 1.489 1.129 1.209 1.169 2.781 0.188
ExpP 1.26 1.031 2.556 0.24
Ti 1.073 0.434 1.146 0.322
Si 0.988 0.663 1.625 0.226

&Calculated from the single crystal elastic constants of M. Nakaraga Ref. 2
PPolycrystalline measurements by Rosenkranz and Fromfsger Ref. 11

1 which the Cauchy relations;;= 3¢, andc,,=C;, are valid.
(14)  Hence the bulk modulus and shear modulus are reduced to

BR: 1]
(S11+Sp2t S33) T 2(S121 S13t S23)
B=3(C11+2C15) = §C11,

and

By=3(C11# Coot C33) + §(C1pt Crat Cag). (15 and
In Egs.(12) and(14), thes;; are the elastic compliance con- Cuy Cyp
stants. Using energy considerations Hilproved that the G= 1 (Cp—C1) ~ 3

Voigt and Reuss equations represent upper and lower limits

of the true polycrystalline constants, and recommended thatrom the above relations we can arrive &G value of
practical estimate of the bulk and shear moduli were thel.67. Although this parameter is mostly applied for cubic
arithmetic means of the extremes. Hence, the elastic modulhaterials, it is interesting to examine TjSiThe B/G value

of the polycrystalline material can be approximated by Hill's for the ductile Ti is 2.47, whereas for brittle elemental Si it is
average and for shear moduli it 8=3(Gr+G,) and for 1.49. The calculated/G value for TiS} from our GGA

bulk moduli it isB= 3(Bg+By). (LDA) calculation is 1.271.13 and this is much lower than
The Young’s modulusE, and Poisson’s ratioy, for an  that of its constituent. This result suggests that JiSrather
isotropic material are given by brittle.
The directional bulk modulus for the single crystal is
9BG 3B—-2G : ; .
E=— andv=-——, (16)  calculated and compared with the corresponding experimen-
3B+G 2(3B+G) tal polycrystalline values in Table IV. Equatiof&2), (A3),

respectively. Using the relations above the calculated bulnd(A4) are exact for single crystals, but only valid as ap-
Poisson’s ratio for TiSiare given in Table IIl. In general the U is found to be in good agreement with the one obtained
large value of shear moduli is an indication of the morefrom the experimental elastic constants of Nakanfuaw-

pronounced directional bonding between atoms. The calcugVer. comparing the experimental values of the single crystal
lated shear moduli from LDA, GGA, and experimental directional bulk modulus with the experimental polycrystal-
single crystal elastic constants are larger than that of most dine values obtained by Peun, Lauterjung and Hifizeom

the intermetallic compoundsThe somewnhat larger value of high pressure x-ray diffraction measurements show a differ-
G obtained from the LDA calculation compared to the GGA ence of 14%. One possible origin for the discrepancy is that
results indicates that LDA treats the bonding behavior of

TiSi, slightly more directional than GGA. The factor that

measures the stability of a crystal against shear is the PoigagLE Iv. The isotropic bulk modulugB in Mbar) and its upper bound
son’s ratio. Our calculated Poisson’s ratio is given in TableB, e in Mbar), bulk modulus along the orthorhombic crystallographic
Il for TiSi, and is considerably smaller than the values re-2xesa, b, andc (B, By, andB,) for TiSi,.

ported for most of the intermetallic compourftishe smaller

value of Poisson’s ratio indicates that TiSs relatively 5 Buveix B B B
stable against shear. Pdghtroduced the quotient of bulk to  LDA 1569 1591 4189 4434 5.788
shear modulus of polycrystalline phas& @) by consider- ~ GCA 1419 1450 3636 3975 5620
ing t_hat the sh(_aar moduIL@ represents the resistance to Eig:; i:ggg 1509 ;fgol ;;(ng 259107
plastic deformation, while the bulk moduli@srepresents the | pa (normalized 3387 3584 4.679
resistance to fracture. A higllow) B/G value is associated  GGA (normalizeq 3.251 3554 5.025
with ductility (brittlenes$. The critical value which separates Exp. 1(normalized 3.173 3564 5202

ductile and brittle materials is about 1.75. It is interesting to ; 4
. . - . . 2 "“%From Peun, Lauterjung, and Hinzsee Ref. 2D
try to understand the microscopic origin of this empirical scaicyjated from the single crystal elastic constants of Nakarae@ Ref.

parameter. Let us assume an isotropic cubic crystal and fop).
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1.00 lation; the results are shown in Fig. 6. We cannot compare
them with the experiment since there are no high pressure
data available for TiSi. The bulk modulus and its pressure

0.75 1 ] derivative for TiSh, obtained by fitting the total energy

§ curve to the universal equation of stateyield 1.565 Mbar
2 and 4.4 in our LDA calculations and 1.392 Mbar and 4.3 in
g 080 ¢ i our GGA calculation, respectively. These bulk modulus val-
g ues are found to be in good agreement with the one obtained
o from the calculated single crystal elastic constantsng Eq.
025 1 i (A1)] given in Table IV, namely 1.569 and 1.419 Mbar.
Volume (A%.u) 4 V. ELASTIC ANISOTROPY
FIG. 6. Equation of state for Tigifrom LDA and GGA calculations. The It is well known that microcracks are induced in ceram-
arrow indicates the experimental equilibrium volume. ics owing to the anisotropy of the coefficient of thermal ex-

pansion as well as elastic anisotrdffyHence it is important

to calculate elastic anisotropy in structural intermetallics in

their.isotropic bqlk modulus was very much smaller 'than thalyger to understand these properties and hopefully find
obtained from Hill's average of bulk modulus given in Table mechanisms which will improve their durability. Essentially

IIl. Hence, we have normalized our linear bulk modulus Us-y)| the known crystals are elastically anisotropic, and a
ing the experimental bulk moduld$The corresponding data proper description of such an anisotropic behavior has, there-
are given in Table IV. ~______ fore, an important implication in engineering science as well
The bulk, shear, and Young's moduli of TiSgiven in 44 iy crystal physics. The shear anisotropic factors provide a
Table Ill are substantially higher than those of the constituyeasure of the degree of anisotropy in the bonding between
ent elements and the average value based on the rule of Mixzoms in different planes. The shear anisotropic factor for the

tures. The large elastic modullus of TjS$ due to stronger {100 shear planes between tt@11) and(010 directions is
directional bonding between Si as well as that between Ti

and Si. On the other hand, the Poisson’s ratio for JiSi _ 4Cyq
much smaller than those of the constituent elements and the "1 ¢;;+cg3—2¢y3°

average value based on the rule of mixtures. Poisson’s rati .
is associated with the volume change during uniaxial defor—'gOr the{01Q shear planes betwedd01) and (00 direc-

(17

; ) - tions it is
mation. If »=0.5, no volume change occurs during elastic
deformation. The lowv value for TiSp means that a large 4cCs5
volume change is associated with its deformation. In addi- A2:C22+ Cas— 2Cp3’ (18)

tion, Poisson’s ratio provides more information about the i
characteristics of the bonding forces than any of the othefnd for the{00L shear planes betwee10 and(010 di-
elastic constant®' It has been proved that=0.25 is the rections itis
lower limit for central-force solids and 0.5 is the upper limit, ACgg
which corresponds to infinite elastic anisotrdpythe low » Az
value (substantially smaller than 0.p%or TiSi, indicates
that the interatomic forces in the compound are noncentrallhe shear anisotropic factors obtained from our theoretical
In support of the above view point the rati@ss/c,,,  Studies along with the ones obtained from the experimental
C31/Cs5, andcy,/cgg Obtained from the Cauchy relations de- values are given in Table V. For an isotropic crystal the
viate considerably from unity. factorsA;, A,, andA; must be one, while any value smaller
or greater than unity is a measure of the degree of elastic
anisotropy possessed by the crystal. It is interesting to note
We have also calculated the equation of sféte pres- that the experimental shear anisotropic factors show a higher
sure versus volumeby taking the volume derivative of the degree of anisotropy than the values obtained from LDA as
fitted total energy obtained from our LDA and GGA calcu- well as GGA calculationgéTable V). This shows that theory

= (19
C111+Cp—2Cq,

A. Equation of state studies

TABLE V. The shear anisotropic factofs,, A,, A, andAg (in %), Ag (in %) and compressibility anisotropy
factorsAg, and Ag, for TiSi, obtained from LDA, GGA calculations, and the experimental study.

A Az As Ac As Asa Asc
LDA 0.718 0.651 0.933 2.909 0.677 0.944 1.305
GGA 0.766 0.743 0.938 3.005 1.069 0.914 1.413
Exp? 0.688 0.539 0.811 3.565 1.394 0.890 1.459

&Calculated from the single crystal elastic constants of Nakarfag@ Ref. 2
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predicts a lower anisotropy in the bonding charge density;—— 4
between the different planes than the experiment. o
In cubic crystals, the linear bulk modulus is the same for
all directions and hence, the shear anisotropy alone is suffi- -
cient to describe the elastic anisotropy. On the other hand| X
for orthorhombic crystals, the elastic anisotropy arises from+ 2 o 2 4 4 2 0 2 4 4

(=]
E (Mbar)
o
E (Mbar)

| I - II 11 4

. . . - E (Mbar) E (Mbar) 2E (ISIba_ri *
the anisotropy of the linear bulk modulus in addition to the ) (b (©

shear anisotropy. The anisotropies of the bulk modulus along o o , o
the a axis andc axis with respect to thb axis can be written - 8 Projections of the directional dependent Young's modulus in differ-
ent planes for TiSi. The continues lines are obtained from the experimental

as elastic constants of Nakamufaee Ref. 2 the dot-dashed line represents
the GGA results, and the dotted line represents the LDA re&ilalong the

An = % = ab plane,(b) along theac plane, andc) along thebc plane.
B, B, a
and (200 one that shows the variation of Young’s modulus with direc-
B, «a tion. The direction dependent Young's modul(s) for
Ag = B, B’ orthorhombic crystals can be defifds

respectively. It is interesting to note that the quantitiesnd l:|4+2|2| 25 421225, .+ 1%s
B defined in the Appendix couple to the elastic anisotropy of E 1 © 1127127 ©1178%137 72722
the crystal when approximating the polycrystalline sample
with a single crystal. The above-mentioned shear and com-
pressibility anisotropy factors were calculated and are listedvheres;; are the usual elastic compliance constants land
in Table V. Note that for these parameters, a value of oné,, andl; are the direction cosines in any arbitrary direction.
indicates elastic isotropy and any departure from one corre=rom the above relation the estimated direction dependent
sponds to a degree of elastic anisotropy. Alternatively,Young's modulus for TiSi, using the elastic compliance
Chung and Buessem introdué@d concept of percent elastic constant obtained from our LDA and GGA calculations and
anisotropy which is a measure of elastic anisotropy posthe experimental resuftare shown in Fig. 7. The elastic
sessed by the crystal under consideration. The percentag@isotropy in TiSj is clearly visible from Fig. 7. It should be
anisotropy in compressibility and shear are defined as noted that the overall topology of the Young’s modulus sur-
By— Bx fac_e is _similar in all three cases. Ho_wever, due to the unc_ier-
AB:B B estimation of the volume_ by_ LDA, it _foIIO\_Ns that the esti-
VTR mated Young’'s modulus in different directions is larger than
and (21) those obtained from GGA calculation as well as from experi-
mental studies. In order to have a better understanding of the
G:M, origin of the changes in Young’s modulus along different
Gyt Gr directions we have also given Young's modulus along the

respectively, wher® and G are the bulk and shear moduli, @b, ac, andcb planes in Fig. 8. From this figure one can see
and the subscripty and R represent the Voigt and Reuss that both LDA and GGA predict that Young's modulus is
bounds. For these two expressions, a value of zero represeff9re isotropic than that found experimentally.
elastic isotropy and a value of 10099 is the largest pos- The experimentally observédanisotropy in the resistiv-
sible anisotropy. The percentage of bulk and shear anisotrdty for different crystallographic orientations was found to be
pies are listed in Table V. Clearly, the calculated elastic consmaller than 20%. Our calculated anisotropy of Young's
stants exhibit less elastic anisotropy than the experimentalljodulus along different crystallographic orientations is
reported elastic constarfts. found to be higher than 40%. This result indicates that,TiSi
The above defined shear moduli and bulk moduli are notS €lastically more anisotropic than its electronic transport

sufficient to describe the elastic behavior of a crystal comProperties. The elastic constantg and c;3 are important,
pletely. A surface construction that is useful in practice isamong others, because they are related to the deformation

behavior and atomic bonding characteristics of transition
metal silicides. It can be seen from Table Il tlegy>c4; for

TiSi,. The implication of this is that the atomic bonds along
the {001} planes between nearest neighbors are stronger than
those along th¢100; plane. By considering the bulk modu-

lus as a measure of the average bond strength and shear
modulus as a measure of the resistance to a change in bond
angle by an external force, Tanaégal 28 proposed thaG/B
represents the relative directionality of the bonding in the
FIG. 7. lllustration of directional dependent Young’s modulus of Jia) material. The value oB/B for TiSi, is larger than that of Ti

calculated from LDA elastic constanid) from GGA elastic constants, and and S_i: indicating that the di_reCtional_ity of the bonding in
(c) from the experimental elastic constants of Nakan{see Ref. 2 TiSi, is stronger than that of its constituents.

+ 21213505+ 13853+ 1513540+ 1313555+ 1313556, (22)
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& 3F Ti-d
= FIG. 10. The valence charge density for Ti8i the 010 plane. 90 contours
1 E have been drawn between the charge distribution 0.01 and 0.1 electrns/a.u
0.15 |-
| | ity of Si compared to Ti. Our site decomposed DOS shows
0.1  Ti-s i that the density of states at the Fermi level is dominated by

! Ti d states. Even though considerable amount o Shdp
N 5' L 5 : é — '1'0' state; are present in the_ occupied part of the DOS, their
Energy (eV) contribution at the Fermi level is very small. The DOS
curves also show that the larger part of the broad DOS
FIG. 9. Angular momentum and site decomposed electron density of statgs aboveEF_ The overall topology of our DOS curves are
of TiSi; . found to be in good agreement with the X-ray photoemission
spectrunt®

As already mentioned the charge density contours in Fig.
VI. CHEMICAL BONDING ANALYZED FROM CHARGE 10 show that there is a strong directional bonding between

DENSITY AND DENSITY OF STATES STUDIES the Si atoms. Further, our angular momentum and site de-

The total, site and angular momentum decomposed DOSomposed DOS given in Fig. 9 show that the Sshates are
of TiSi, are shown in Fig. 9. The total DOS shows that theremixed with Si(3) states over the whole range of the con-
is a deep valley close to the Fermi lev@l{) and this valley duction band, indicating large SiéB—Si(3p) hybridization.
is referred to as a pseudogap. This pseudogap indicates tA&is observation is important for the bonding in Ti&nd is
presence of covalent bonding in TjSi Quite often the in agreement with the conclusion arrived from the soft X-ray
pseudogap separates the bonding states from the an@émission spectroscofBXES study3? So far little attention
bonding/nonbonding states. There exists a correlation beias been given to understanding the role of 8)(8tates on
tween structural stability and the position®B§ with respect the chemical bonding in TiSi From the SXES study it was
to the pseudogaf’. From Fig. 9 we observe that the Fermi concluded? that a finite amount of Si(®) states is present in
level falls below the pseudogap in TjSiThis indicates that the valence band. In order to confirm this we have also
not all the bonding states are filled and some extra electronshown the Si(8) DOS in Fig. 9. From this figure it is clear
are required to reach maximum stability in this compoundthat a considerable amount of Sg{Bstates is present in the
This may be the reason for the presence of an orthorhombienergy region 0-5 eV belo&g in TiSi,.
C49 metastable phase at low temperatures. The calculated value of NHg) for TiSi, from our GGA

Considerable attention has been focused on,TiiSbr- treatment is 2.47 stat@V cell). This value is found to be in
der to understand its bonding properti&s! To gain more  good agreement with the value of 2.42 stgeg/cell) ob-
insight into the bonding behavior of TiSie have given the tained from an linearly augmented plane wa(leAPW)
charge density contour plots of TiSh the 010 plane in Fig. calculation®® Recently Affronteet al3 estimated the renor-
10. The interesting aspect of this figure is the presence of malized electronic density of states at the Fermi level to be
strong directional bonding between the Si atoms. In thi2.85 state$eV cell) using low temperature specific heat
plane each face centered Ti atom is surrounded by six Sheasurement. From this we calculate an electron—phonon
atoms. There is only a weak directional bonding between Timass enhancement factor of 0.152. This suggests a low value
and Si. The charge around the Ti sites is moved towards thef electron—phonon coupling constant, which may explain
Si atoms and this is consistent with the larger electronegatiwhy no superconductivity has been observed for J,iSil-
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TABLE VI. The density(p in g/cn®), longitudinal, transverse, average elas- The 0p can also be obtained from the average sound velocity

tic wave velocity ¢, vs, vm in m/s), and the Debye temperature from the ohtained by integrating the elastic wave velocities over vari-
average elastic wave velocity obtained from polycrystalline elastic modulus

(6, in K) and single crystal elastic constanty( in K). ous dllrect|ons. of37the single crystal from tlg using the
following relation:

P 4] Vs Vm 0Dp Obs h oN 1/3
O — ~125-13 (26)
LDA 42230 9028 5750 6321 788 775 Ds~ k \a7v] P 0
GGA 40471 8694 5487 6038 742 722
Exp.: 4.0937 8629 5345 5894 727 700 whereh, k, and p have the usual meaning described in Eq.
Exp. 664 (23), N is the number of atoms in one molecul,is the

volume of the unit cell, and, is a function which represents
aCalculated from the single crystal elastic constants of Nakartage Ref. ~ the average velocity of elastic waves in different directions
2). of the single crystal. Joardat al®” derived the explicit ex-

bSpecifi g . . .
Specific heat measurements by Affromteal. (see Ref. 3% pressions to calculate this function for orthorhombic crystals
Single crystal resistivity measurements by Hirano and Késse Ref. 40 . . . .

for ten different directions using

though superconductivity has been observed in structurally +3878& fg+ ) — 44352 f5+fy)]/105840,

related systems like CogiTaSh, and NbSJ. wheref,, fg, fc, fp, fe, fg, fg, andfg are the values of

the functiona, in the (100, (010, (001), (110, (011), (101),
(v310), (1v30), (01v3), and (10v3) directions, respectively.
VIl. CALCULATION OF DEBYE TEMPERATURE These values can be obtained from the single crystal elastic

constants using the explicit expressions for different direc-
As a fundamental parameter, the Debye temperature COfions given by Joardaet al3” The reliability of the calcu-

relates with many physical properties of solids, such as sp8xted value offp_depends upon the number of directions
cific heat, elastic constants, and melting temperature. At lov%onsidered in OUSI' calculations. Joardgral3” showed that

temperatures the vibrational excitations arise solely l‘rom[en different directions give reasonably good values of the

acoustic vibrations. Hence, at low temperatures the Debyﬁ)ebye temperature. Affrontet al® estimated the Debye
temperature calculated from elastic constants is the same s : .

X . mperature of TiSifrom the low temperature specific heat
that determined from specific heat measurements. One of tf}% P 2 P b

tandard methods t lculate the Debve t . easurements and the value given in Table VI is lower than
standard methods 1o caicuate the Lebye em_peraﬂg)al(s the one obtained from the experimental as well as our theo-
from elastic constant data, sinég may be estimated from

th d d veloci by th o retical elastic constants. By fitting the temperature depen-
e averaged sound velocityy,, by the equatio dence of the resistivity with a Bloch—Qraisen curve, Tho-

h[3n [Nap\|*® maset al?’ estimated a Debye temperature of 338 K. It
O,k |24 (W) Um, (23 should be noted that the specific-heat measureriféntshe
temperature range 100-500 K gave an estimationgof

whereh is Planck’s constank is Boltzmann's constantla =510 K. From these results it is clear that the Debye tem-

is Avogadro’s numberyp is the densityM is the molecular  perature of TiSi increases with decreasing temperature. This
weight andn is the number of atoms in the molecule. In conclusion is consistent with the general behavior of a de-
Table VI the density of TiSiobtained from the experimental creasing Debye temperature with increasing temperature in
and theoretical data is given. Because of the underestimatégtermetallic compound® Further, only the acoustic
volume in LDA the calculated density is higher than thepranches of phonons are active at low temperatures and
experimental value. The average wave veloaity in the  hence, the estimateé, from our elastic constants is valid
polycrystalline material is approximately given®fy for low temperatures. It is interesting to note that the Debye

1/2 1\]-13 temperature obtained from E¢(R4) is closer to the experi-

= (—3 + —3) , (24)  mental value than the one obtained often from @4) given

3luvy v in Table VI. From temperature dependent electrical resistiv-
wherep, andv, are the longitudinal and transverse elasticity measurement, Hirao and KafSefound that the Debye
wave velocity of the polycrystalline material and are ob-teémperature for Tigihas a minimum value of 560 K along
tained (using the polycrystalline shear modul@and the the(001) direction and a maximum value of 588 K along the

Um=—

bulk modulusB) from Navier's equation as follow¥ (010 direction. It should be noted that titiy obtained from
i elastic constants is always higher than that obtained from
Bt ﬁ electrical resistivity studies. The discrepancy may be partly
3 ascribed to its temperature dependence.
V=
P

VIIl. CONCLUSIONS
and

I We have used the FLMTO method to perform a set of
- E 25) first principles, self-consistent, total energy calculations to
Ylp) determine the equations of state and equilibrium structural
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parameters of TiSiin the orthorhombic C54 structure. The (€11—C12)(C33— C13) — (Co3— C13)(C11— C13)

calculated. lattice constants are in excellent agreement with ¢~ (C33— C13)(Cor— C1) — (C13— C23)(C1o— Co3) ’

the experimental data when we use the GGA for the ex-

change and correlation potential. We also calculated thend

strain energies for nin_e different di;tortions _of"EiSjsing (€ C1a)(C11— C13) — (C11—C12)(Co3— C1)

LDA as Well as GGA in the theoret!cally optimized crystal (Coo—C12)(Caz— C19) — (C12— Cp2) (C1a— Coa)

structure in order to calculate elastic constants. Overall the

elastic constants obtained from the GGA calculations ard he single crystal isotropic bulk moduluBg,,) obtained
found to be somewhat in better agreement with the experiffom Eg. (A1) is the same as the one obtained from experi-
mental values than those obtained from LDA calculationsmental pressure studies on a single crystal, where the relax-
From the elastic constants, the bulk moduli along the Crysation ofa/b andc/b as a function of pressure is considered.
tallographic axes are calculated and are compared with exdterestingly, this value is exactly the same as the one ob-
perimental values. The comparison of directional dependeri@ined from the Reuss average i.e., the lower bound of the
bulk modulus and Young’s modulus obtained from the LDA bulk modulug given in Table Ill. In general, to minimize the
and GGA calculations with experimental results show thagmount of computations, the bulk modulus of the orthorhom-
the GGA considerably improves the elastic properties ofiC system will be obtained by varying the volume for fixed
TiSi,. Using Hill's approximation, the ideal polycrystalline @/b andc/b values. This will always give an upper bound to
aggregates bulk modulus, shear modulus, Young’s modulughe bulk modulus B,yreiay . This value can be obtained from
and Poisson’s ratio, are calculated. The Poisson’s ratio dtd- (A1) by substitutinge=8=1. TheB laxvalue obtained
TiSi, was found to be lower than that of ordinary metals andffom Eg. (A1), using the above procedure, is given in Table
alloys and this shows clear deviations from central forces idV and is exactly the same as one obtains from Voigt aver-
this material. We also discussed the chemical bonding i®ges given in Table Ill. The bulk modul along tad andc
TiSi, through the angular momentum and site decompose@Xis are defined as

density of states, charge density analysis, and elastic anisot- dpP A

ropy, of this material. From the theoretically obtained poly- B,=a da” m, (A2)
crystalline shear moduli and bulk moduli as well as the av-
erage elastic wave velocity over different directions, the dP B,
Debye temperature was calculated and found to be in good Bv=b g =—" (A3)
agreement with the experimental values.
B—c o0 _Ba (Ad)
¢ “dec B’
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