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Ideal Fluids in D=2. For fluids described by the Euler equation, the continuity

equation and an equation for energy conservation, there are no transport processes, η = 0,

κT = 0 and the entropy of each piece of fluid is fixed. Note P740.6.tex, Eqs. (1)-(3).

Such a transportless fluid (sometimes called inviscid) may also have constant density, ρ = ρ0.

[When this is the case you don’t have to worry about an equation of state for now there

are as many equations a variables and the pressure, P , whatever it happens to do, does not

vary with ρ since ρ is constant.]

1. Ideal Fluid. For an ideal fluid we have η = 0, κT = 0, ρ = ρ0 and the entropy of each

piece of fluid is fixed. Because ρ is constant the continuity equation reduces to

∇ · v = 0. (1)

On our way to the Bernoulli equation we used the Euler equation in the form

∂v

∂t
− v × (∇× v) = −∇

(
h+

1

2
v2
)
. (2)

If we take the curl of this equation we have

∂ (∇× v)

∂t
−∇× v × (∇× v) = 0. (3)

This equation, equivalent to the Euler equation, is solved by ∇×v = 0. Thus the continuity

equation and the Euler equation reduce to finding v such that

∇ · v = 0, ∇× v = 0. (4)

We must complement these equations with information on how v behaves asymptotically

in space and how it behaves near physical surfaces. Subtlety near surfaces ocurs when the

viscosity is present. Without η we simply don’t let the fluid pass through a surface. We

have boundary condition v · n=0, where n is the pointwise normal to a surface.

The ideal fluid problem is set by

∇ · v = 0, ∇× v = 0, n · v on Σ. (5)
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2. The velocity potential. The first of Eq. (4) is solved trivially if we take

v = ∇φ, ∇ · v = ∇2φ = 0, (6)

where φ is the velocity potential. To find v solve ∇2φ = 0 subject to appropriate boundary

conditions. [As a Math-Physics problem this should remind you of electrostatics.]

When doing two dimensional problems there is a practical advantage afforded by introducing

a second scalar field, ψ called the stream function. From here forward we are in D=2.

3. The stream function. Define a scalar function ψ such that

vx = u =
∂ψ

∂y
, vy = v = −∂ψ

∂x
, (7)

where for simplicity we will use v = (u, v, w) = (u, v, 0), a more or less standard notation,

to denote the components of v. Right away we have

∇ · v =
∂u

∂x
+
∂v

∂y
=

∂2ψ

∂x∂y
− ∂2ψ

∂y∂x
= 0 (8)

from Eq. (6). With v given by Eq. (6) we have

∇× v = ez

(
∂v

∂x
− ∂u

∂y

)
= −ez

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
, (9)

or ∇× v = for ∇2ψ = 0.

4. A complex potential. Take φ and ψ to be the two components of an analytic function

in the complex plane, i.e.,

F (z) = φ(z) + iψ(z). (10)

From Cauchy-Riemann

∂φ

∂x
=
∂ψ

∂y
= u, (11)

∂φ

∂y
= −∂ψ

∂x
= v, (12)

with ∇2φ = ∇2ψ = 0.

Litany. Any analytic function in the complex plane describes a possible ideal fluid flow

problem.
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FIG. 1: Fluid flow is in the direction of ∇φ and parallel to lines of constant ψ. Lines of constant

ψ are orthogonal to lines of constant φ.

The analytic function will have two parts, φ, the velocity potential, from which you learn v

and ψ, the stream function, from which you learn ... ?

5. About the stream function.

1. Suppose you are on a line of constant ψ, say ψ = 11. Then

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy = −vdx+ udy = 0 (13)

or along a contour of constant ψ
dx

u
=
dy

v
. (14)

That is, a contour of constant ψ is a streamline of the fluid flow.

2. The fluid flow between two streamlines is given by the difference between the numerical

values of ψ of the streamlines. For a path between two streamlines write

∫ 1

2
ds · v =

∫ 1

2
(dy,−dx) · (u, v) =

∫ 1

2
dψ = ψ1 − ψ2. (15)
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FIG. 2: The fluid flow between two streamlines is given by the difference between the numerical

values of ψ of the streamlines.
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