Ideal Fluids in D=2. For fluids described by the Euler equation, the continuity equation and an equation for energy conservation, there are no transport processes, $\eta = 0$, $\kappa_T = 0$ and the entropy of each piece of fluid is fixed. Note **P740.6.tex**, Eqs. (1)-(3). Such a transportless fluid (sometimes called inviscid) may also have constant density, $\rho = \rho_0$.

[When this is the case you don't have to worry about an equation of state for now there are as many equations a variables and the pressure, P, whatever it happens to do, does not vary with ρ since ρ is constant.]

1. Ideal Fluid. For an ideal fluid we have $\eta = 0$, $\kappa_T = 0$, $\rho = \rho_0$ and the entropy of each piece of fluid is fixed. Because ρ is constant the continuity equation reduces to

$$\nabla \cdot \mathbf{v} = 0. \tag{1}$$

On our way to the Bernoulli equation we used the Euler equation in the form

$$\frac{\partial \mathbf{v}}{\partial t} - \mathbf{v} \times (\nabla \times \mathbf{v}) = -\nabla \left(h + \frac{1}{2} v^2 \right).$$
⁽²⁾

If we take the **curl** of this equation we have

$$\frac{\partial \left(\nabla \times \mathbf{v}\right)}{\partial t} - \nabla \times \mathbf{v} \times \left(\nabla \times \mathbf{v}\right) = 0.$$
(3)

This equation, equivalent to the Euler equation, is solved by $\nabla \times \mathbf{v} = 0$. Thus the continuity equation and the Euler equation reduce to finding \mathbf{v} such that

$$\nabla \cdot \mathbf{v} = 0, \quad \nabla \times \mathbf{v} = 0. \tag{4}$$

We must complement these equations with information on how \mathbf{v} behaves asymptotically in space and how it behaves near physical surfaces. Subtlety near surfaces ocurs when the viscosity is present. Without η we simply don't let the fluid pass through a surface. We have boundary condition $\mathbf{v} \cdot \mathbf{n} = 0$, where \mathbf{n} is the pointwise normal to a surface. The ideal fluid problem is set by

$$\nabla \cdot \mathbf{v} = 0, \quad \nabla \times \mathbf{v} = 0, \quad \mathbf{n} \cdot \mathbf{v} \text{ on } \Sigma.$$
(5)

2. The velocity potential. The first of Eq. (4) is solved trivially if we take

$$\mathbf{v} = \nabla\phi, \quad \nabla \cdot \mathbf{v} = \nabla^2 \phi = 0, \tag{6}$$

where ϕ is the velocity potential. To find **v** solve $\nabla^2 \phi = 0$ subject to appropriate boundary conditions. [As a Math-Physics problem this should remind you of electrostatics.] When doing two dimensional problems there is a practical advantage afforded by introducing a second scalar field, ψ called the stream function. From here forward we are in D=2.

3. The stream function. Define a scalar function ψ such that

$$v_x = u = \frac{\partial \psi}{\partial y}, \quad v_y = v = -\frac{\partial \psi}{\partial x},$$
(7)

where for simplicity we will use $\mathbf{v} = (u, v, w) = (u, v, 0)$, a more or less standard notation, to denote the components of \mathbf{v} . Right away we have

$$\nabla \cdot \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = \frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial^2 \psi}{\partial y \partial x} = 0$$
(8)

from Eq. (6). With \mathbf{v} given by Eq. (6) we have

$$\nabla \times \mathbf{v} = \mathbf{e}_z \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) = -\mathbf{e}_z \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right),\tag{9}$$

or $\nabla \times \mathbf{v} =$ for $\nabla^2 \psi = 0$.

4. A complex potential. Take ϕ and ψ to be the two components of an analytic function in the complex plane, i.e.,

$$F(z) = \phi(z) + i\psi(z). \tag{10}$$

From Cauchy-Riemann

$$\frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y} = u, \tag{11}$$

$$\frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x} = v, \tag{12}$$

with $\nabla^2 \phi = \nabla^2 \psi = 0.$

Litany. Any analytic function in the complex plane describes a possible ideal fluid flow problem.

FIG. 1: Fluid flow is in the direction of $\nabla \phi$ and parallel to lines of constant ψ . Lines of constant ψ are orthogonal to lines of constant ϕ .

The analytic function will have two parts, ϕ , the velocity potential, from which you learn **v** and ψ , the stream function, from which you learn ... ?

5. About the stream function.

1. Suppose you are on a line of constant ψ , say $\psi = 11$. Then

$$d\psi = \frac{\partial\psi}{\partial x}dx + \frac{\partial\psi}{\partial y}dy = -vdx + udy = 0$$
(13)

or along a contour of constant ψ

$$\frac{dx}{u} = \frac{dy}{v}.$$
(14)

That is, a contour of constant ψ is a streamline of the fluid flow.

2. The fluid flow between two streamlines is given by the difference between the numerical values of ψ of the streamlines. For a path between two streamlines write

$$\int_{2}^{1} d\mathbf{s} \cdot \mathbf{v} = \int_{2}^{1} (dy, -dx) \cdot (u, v) = \int_{2}^{1} d\psi = \psi_{1} - \psi_{2}.$$
 (15)

FIG. 2: The fluid flow between two streamlines is given by the difference between the numerical values of ψ of the streamlines.