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Theoretical Framework

Kohn-Sham Equations

εi |φi 〉 = Ĥ[n]|φi 〉

n(r) =
∑

i ψ
†
i (r)ψi (r)

Time-dependent Kohn-Sham Equations

i~
d

dt
|φi 〉 = Ĥ(t)[n(t)]|φi 〉

i~
d

dt
|φi 〉 =

{
T̂ + V̂ external(t) + V̂HXC

[n(t)]

}
|φi 〉

T̂ → −∇2

2m

V̂ ext(t)→ ion potential + E(t) · r (for example)

V̂HXC →
∫ n(r′,t)
|r−r′| dr

′ + V XC[n(t)](r) (Adiabatic LDA)
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Similar Problems

Time Dependent Kohn-Sham equations (TDKS)

i~
d

dt
|φi 〉 = Ĥ(t)[n(t)]|φi 〉

Time Dependent Schrödinger Equation (TDSE)

i~
d

dt
|φ〉 = Ĥ(t)|φi 〉

Non-linear Schrödinger Equation (NLSE)

i∂tψ = −1

2
∂2
xψ + κ|ψ|2ψ
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Numerical Integration
Concerns

Accuracy,
e.g. method is order O(∆t)4

Stability,
e.g. numerical error increases as exp(γ(∆t)T )

”Physical” properties,
e.g. method conserves energy or norm exactly
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Euler Method
A First Method

Derivation

i~
d

dt
|φi 〉 = Ĥ|φi 〉

i~
|φi (t + ∆t)〉 − |φi (t)〉

∆t
+O(∆t)2 = Ĥ|φi (t)〉

|φi (t + ∆t)〉 = |φi (t)〉 − i

~
∆tĤ|φi (t)〉+Olocal(∆t)2

Integration Error (order)

→ |φi (t)〉+Ointegration(∆t)

Not Stable!
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Second Order Differences (SOD), Part I
Second order in time

|φi (t + ∆t)〉 = |φ(t −∆t)〉 − 2i∆tĤ[n(t)]|φi (t)〉

Integration Error (order)

→ |φi (t)〉+Ointegration(∆t)2

Conditionally Stable of TDSE

Unconditionally Unstable for TDKS
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Von Neumann Stability Analysis
Criterion of Stability from Local Analysis

∂u

∂t
= α

∂2u

∂x2

Discretization (finite differences) in time and space

�
�
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�
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20.2 Diffusive Initial Value Problems 1047

t or n

x or j

FTCS

(a)

Fully Implicit(b) Crank-Nicolson(c)

Figure 20.2.1. Three differencing schemes for diffusive problems (shown as in Figure 20.1.2). (a) For-
ward time centered space is first-order accurate but stable only for sufficiently small timesteps. (b) Fully
implicit is stable for arbitrarily large timesteps but is still only first-order accurate. (c) Crank-Nicolson is
second-order accurate and is usually stable for large timesteps.

where
DjC1=2 � D.xjC1=2/ (20.2.20)

and the heuristic stability criterion is

�t 
 min
j

�
.�x/2

2DjC1=2

�
(20.2.21)

The Crank-Nicolson method can be generalized similarly.
The second complication one can consider is a nonlinear diffusion problem, for

example whereD D D.u/. Explicit schemes can be generalized in the obvious way.
For example, in equation (20.2.19) write

DjC1=2 D
1
2

�
D.unjC1/CD.u

n
j /
	

(20.2.22)

Implicit schemes are not as easy. The replacement (20.2.22) with n! nC 1 leaves
us with a nasty set of coupled nonlinear equations to solve at each timestep. Often
there is an easier way: If the form of D.u/ allows us to integrate

dz D D.u/du (20.2.23)

analytically for z.u/, then the right-hand side of (20.2.1) becomes @2z=@x2, which

un+1
j − unj

∆t
= α

(
unj+1 − 2unj + unj−1

)
∆x2

Eigenmode analysis unj → ξ(k)ne ikj∆x

ξ(k) = 1− 4
|α|∆t

∆x2
sin2(k∆x/2)

Stability Criterion |ξ| ≤ 1

2|α|∆t

∆x2
≤ 1 −→

∆t × EPW
cutoff

π2~
≤ 1
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Second Order Differences (SOD) for TDSE, Part II

∆t × EPW
cutoff

π2~
≤ 1

Analysis valid only for TDSE
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Stabilizing SOD
The effect of the self consistent potential

0 5 10 15 20 25 30 35
Simulation time t (fs)

-620.170

-620.165

-620.160

T
o
ta

l 
en

er
g
y
 E

to
t (

eV
)

∆t = 0.069 as
∆t = 0.104 as
∆t = 0.138 as

0 1 2 3 4 5 6 7 8 9 10

-620.3

-620.2

-620.1

-620.0 ∆t = 0.069 as
∆t = 0.104 as
∆t = 0.138 as

(a)

(b)

sc100-SOD

RK2

Updating the Hamiltonian once every several steps help stabilize the
integration
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Runge-Kutta 4th Order
A conditionally stable, accurate method

|k1〉 = −i∆t Ĥ[nφ(t)] |φ(t)〉 ,

|k2〉 = −i∆t Ĥ[nφ(t)+0.5·k1
]|φ(t) + 0.5 · k1〉,

|k3〉 = −i∆t Ĥ[nφ(t)+0.5·k2
]|φ(t) + 0.5 · k2〉,

|k4〉 = −i∆t Ĥ[nφ(t)+k3
]|φ(t) + k3〉,

|φ(t + ∆t)〉 = |φ(t)〉+
1

6
|k1〉+

1

3
|k2〉+

1

3
|k3〉+

1

6
|k4〉
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Parallel Scalability

1 10 100 1000
Number of cores

0.01

0.1

1

T
im

e 
st

ep
s 

p
er

 s
ec

o
n
d
 (

s-1
)

SD
RK4

No orthogonalization bottleneck !

BO vs. TDKS+Ehrenfest, relative cost 500→ 50→ 25

∆tBOMD

∆tTDKS
∼ 500,

#SD

#MD
∼ 10,

WalltimeSD

WalltimeTDKS
= 2
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Cayley’s Method (Crank Nicholson)
An Implicit Method

{
1̂ +

1

2
iĤ[n(t + ∆t)]∆t

}
|ψi (t + ∆t)〉 =

{
1̂− 1

2
iĤ[n(t)]∆t

}
|ψi (t)〉

(1)
Future step is an implicit function of the previous step (need a non linear
solution).
An approximation (use past density){

1̂ +
1

2
iĤ[n(t)]∆t

}
|ψi (t + ∆t)〉 =

{
1̂− 1

2
iĤ[n(t)]∆t

}
|ψi (t)〉 (2)

Still not very suitable for PW expansion.
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Conclusions

TDKS Propagators are subject to stability issues (like any PDE)

Methods that work for TDSE may not work at all for TDKS

RK4 presents good accuracy and stabiliry (at least for T = 100fs)

Plane-wave accuracy

Parallel efficiecy up to 1500 cores for 450 electrons

References: Schleife et al., ”Explicit integrators for the time-dependent
Kohn-Sham equations within the plane-wave pseudopotential formalism”,
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