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Abstract

Ionic polymer-metal composite (IPMC) actuators have promising applications in biomimetic robotics, biomedical

devices, and micro/nano-manipulation. In this paper a physics-based model is developed for IPMC actuators, which

is amenable to model reduction and control design. The model is represented as an infinite-dimensional transfer

function relating the bending displacement to the applied voltage. It is obtained by exactly solving the governing

partial differential equation (PDE) in the Laplace domain for the actuation dynamics, where the effect of the

distributed surface resistance is incorporated. The model is expressed in terms of fundamental material parameters

and actuator dimensions, and is thus geometrically scalable. To illustrate the utility of the model in controller design,

an H∞ controller is designed based on the reduced model and applied to tracking control. Experimental results are

presented to validate the proposed model and its effectiveness in real-time control design.
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I. INTRODUCTION

Ionic polymer-metal composites (IPMCs) form an important category of electroactive polymers (also known as

artificial muscles) and have built-in actuation and sensing capabilities [1], [2]. An IPMC sample typically consists

of a thin ion-exchange membrane (e.g., Nafion), chemically plated on both surfaces with a noble metal as electrode

[3]. Transport of hydrated cations and water molecules within an IPMC under an applied voltage and the associated

electrostatic interactions lead to bending motions of the IPMC, and hence the actuation effect. Fig. 1 illustrates

the mechanism of the IPMC actuation. Because of their softness, resilience, biocompatibility, and the capability of

producing large deformation under a low action voltage, IPMCs are very attractive for many applications in the

fields of biomedical devices and biomimetic robots [4]–[10]. Microfabrication of IPMC [11] has also been reported,

which extends IPMC’s applications into micro and nano manipulation domains.
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Fig. 1. Illustration of IPMC actuation mechanism.

A faithful and practical model is desirable for real-time control of this novel material in various potential

applications. Current modeling work can be classified into three categories based on their complexity levels. Based

purely on the empirical responses, black-box models, e.g., [12], [13], offer minimal insight into the governing

mechanisms within the IPMC. While these models are simple in nature, they are often sample-dependent and not

scalable in dimensions. As a more detailed approach, the gray-box models, e.g., [14]–[16], are partly based on

physical principles while also relying on empirical results to define some of the more complex physical processes.

In the most complex form, white-box models with partial differential equations (PDEs), e.g., [17]–[22], attempt
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to explain the underlying physics for the sensing and actuation responses of IPMCs, but they are not practical

for real-time control purposes. In particular, Farinholt derived the impedance response for a cantilevered IPMC

beam under step and harmonic voltage excitations [20]. The derivation was based on a linear, one-dimensional

PDE governing the internal charge dynamics, which was first developed by Nemat-Nasser and Li for studying the

actuation response of IPMCs [18].

In this paper, an explicit control-oriented yet physics-based actuation model for IPMC actuators is presented. The

model combines the seemingly incompatible advantages of both the white-box models (capturing key physics) and

the black-box models (amenable to control design). The proposed modeling approach provides an interpretation of

the sophisticated physical processes involved in IPMC actuation from a systems perspective. The model development

starts from the same governing PDE as in [18], [20] that describes the charge redistribution dynamics under external

electrical field, electrostatic interactions, ionic diffusion, and ionic migration along the thickness direction. The

model extends the work in [18], [20] by incorporating the effect of distributed surface resistance, which is known

to influence the actuation behavior of IPMCs [23], [24]. Moreover, by converting the original PDE into the Laplace

domain, an exact solution is obtained, leading to a compact, analytical model in the form of infinite-dimensional

transfer function. The model can be further reduced to low-order models, which again carry physical interpretations

and are geometrically scalable.

Experiments have been conducted to validate the proposed dynamic model for IPMC actuators in a cantilevered

configuration. Good agreement, both in magnitude and in phase, has been achieved between the experimental

measurement and the model prediction for the impedance response from 0.02 Hz to 100 Hz, and for bending

response from 0.02 Hz to 20 Hz. The results show that considering the surface resistance leads to more accurate

predictions. The geometric scalability of the actuator model has also been confirmed without re-tuning of the

identified physical parameters.

An example is further provided to illustrate the use of the proposed model for controller development, where an

H∞ controller is designed based upon a reduced model. Experimental results on tracking control have shown that

model-based H∞ controller ensures internal stability and tracking precision in the presence of measurement noises

and model uncertainties while taking into account control effort consumption.
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The remainder of the paper is organized as follows. The governing PDE is reviewed in Section II. In Section III, the

electrical impedance model for IPMC actuator is derived by exactly solving the PDE, with and without considering

the surface resistance. This lays the groundwork for deriving the full actuation model, which is described in

Section IV. Model reduction is discussed in Section V. Experimental validation of the proposed model is presented

in Section VI. Model-based H∞ controller design and its real-time implementation are reported in Section VII.

Finally, concluding remarks are provided in Section VIII.

II. THE GOVERNING PARTIAL DIFFERENTIAL EQUATION

The governing PDE for charge distribution in an IPMC was first presented in [18] and then used by Farinholt and

Leo [20] for investigating the actuation and sensing response. Let D, E, φ , and ρ denote the electric displacement,

the electric field, the electric potential, and the charge density, respectively. The following equations hold:

E =
D
κe

= −∇φ , (1)

∇ ·D = ρ = F(C+−C−) , (2)

where κe is the effective dielectric constant of the polymer, F is Faraday’s constant, and C+ and C− are the cation

and anion concentrations, respectively. The continuity equation is given by

∇ ·J = −∂C+

∂ t
, (3)

where J is the ion flux vector. Since the thickness of an IPMC is much smaller than its length or width, one can

assume that, inside the polymer, D, E, and J are all restricted to the thickness direction (x-direction). This enables

one to drop the boldface notation for these variables. The ion flux consists of diffusion, migration, and convection

terms:

J = −d

(
∇C+ +

C+F
RT

∇φ +
C+∆V

RT
∇p

)
+C+v , (4)

where d is the ionic diffusivity, R is the gas constant, T is the absolute temperature, p is the fluid pressure, v is

the free solvent velocity field, and ∆V is the volumetric change. Considering Darcy’s Law [25] and ignoring the

nonlinear terms in equation (4) (See [26] for justification), the PDE for charge density can be derived as

∂ρ
∂ t

−d
∂ 2ρ
∂x2 +

F2dC−

κeRT

(
1−C−∆V

)
ρ = 0 . (5)
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Nemat-Nasser and Li [18] assumed that the induced stress is proportional to the charge density:

σ = α0ρ , (6)

where α0 is the coupling constant.

Farinholt [20] investigated the current response of a cantilevered IPMC beam when the base is subject to step

and harmonic actuation voltages. A key assumption is that the ion flux at the polymer/metal interface is zero. This

assumption, which serves as a boundary condition for (5), leads to

(
∂ 3φ
∂x3 − F2C−

κeRT

(
1−C−∆V

) ∂φ
∂x

)|x=±h = 0 . (7)

While the work in [20] represents an important progress in IPMC modeling, it cannot be used for model-based

controller design. The latter is the main motivation of this paper.

III. ELECTRICAL IMPEDANCE MODEL

From (6), the stress induced by the actuation input is directly related to the charge density distribution ρ .

Therefore, as a first step in developing the actuation model, we will derive the electrical impedance model in this

section. While the latter is of interest in its own right, one also obtains the explicit expression for ρ as a byproduct

of the derivation.

Consider Fig. 2, where the beam is clamped at one end (z = 0), and is subject to an actuation voltage producing

the tip displacement w(t) at the other end (z = L) . The neutral axis of the beam is denoted by x = 0, and the upper

and lower surfaces are denoted by x = h and x = −h, respectively.

h

w(t)

x

y

z

z = Lz = 0

x = h

L

x = 0

Fig. 2. Geometric definitions of an IPMC beam in the cantilevered configuration.

To ease the presentation, define the aggregated constant

K
�
=

F2dC−

κeRT

(
1−C−∆V

)
. (8)
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Performing Laplace transform for the time variable of ρ(x,z,t) (noting the independence of ρ from the y coordinate),

one converts (5) into the Laplace domain:

sρ (x,z,s)−d
∂ 2ρ (x,z,s)

∂x2 +Kρ (x,z,s) = 0 , (9)

where s is the Laplace variable. Define β (s) such that β 2(s) = s+K
d . With an assumption of symmetric charge

distribution about x = 0, a generic solution to (9) can be obtained as

ρ(x,z,s) = 2c2(z,s)sinh(β (s)x) , (10)

where c2(z,s) depends on the boundary condition of the PDE. Using (10) and the field equations (1) and (2), one

can derive the expressions for the electric field E and then for the electric potential φ in the Laplace domain:

E(x,z,s) = 2c2(z,s)
cosh(β (s)x)

κeβ (s)
+a1(z,s) , (11)

φ(x,z,s) = −2c2(z,s)
sinh(β (s)x)

κeβ 2(s)
−a1(z,s)x+a2(z,s) , (12)

where a1(z,s) and a2(z,s) are appropriate functions to be determined based on the boundary conditions on φ .

Two different boundary conditions are discussed next, one ignoring the surface electrode resistance and the other

considering the resistance. In both cases it will be shown that the final actuation current is proportional to the

applied voltage input V (s), and thus a transfer function for the impedance model can be derived.

A. Model Ignoring the Surface Resistance

First consider the case where the surface electrodes are perfectly conducting, as was assumed by Farinholt [20].

The electric potential is uniform across both surfaces x = ±h, and without loss of generality, the potential is set to

be:

φ (h,z,s) = −2c2 (z,s) sinh(β (s)h)
κeβ2(s) −a1(z,s)h+a2(z,s) = V (s)

2 , (13)

φ (−h,z,s) = 2c2 (z,s) sinh(β (s)h)
κeβ2(s) +a1(z,s)h+a2(z,s) = −V (s)

2 . (14)

Combining (12), (13), (14) with (7), which is now written as

(
∂ 3φ
∂x3 − K

d
∂φ
∂x

)|x=±h = 0 ,
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one can solve for a1(z,s), a2(z,s), and c2(z,s), and then obtain E(h,z,s) from (11):

E (h,z,s) = −V (s)
2h

γ (s)(s+K)
(sγ (s)+K tanh(γ (s)))

, (15)

where γ(s)
�
= β (s)h. The total charge is obtained by integrating the electrical displacement D on the boundary

x = h:

Q(s) =
∫ W

0

∫ L

0
D(h,z,s)dzdy =

∫ W

0

∫ L

0
κeE(h,z,s)dzdy . (16)

Plugging (15) into (16), one can derive Q(s), which is linear with respect to the external stimulus V (s). The

actuation current i(t) is the time-derivative of the charge Q(t), and hence I(s) = sQ(s) in the Laplace domain. The

impedance is then derived as:

Z1 (s) =
V (s)
I (s)

=
s+K tanh(γ(s))

γ(s)

Cs(s+K)
, (17)

where C = κe
WL
2h can be regarded as the capacitance of the IPMC. See Appendix A for the detailed derivation.

B. Model Considering Distributed Surface Resistance

The surface electrode of an IPMC typically consists of aggregated nanoparticles formed during chemical reduction

of noble metal salt (such as platinum salt) [3]. The surface resistance is thus non-negligible and has an influence

on the sensing and actuation behavior of an IPMC [23]. In this paper the effect of distributed surface resistance is

incorporated into the impedance model, as illustrated in Fig. 3. Let the electrode resistance per unit length be r 1 in z

direction and r2 in x direction. One can further define these quantities in terms of fundamental physical parameters:

r1 = r′1/W , r2 = r′2/W , with r′1 and r′2 representing the surface resistance per {unit length ·unit width} in z and x

directions, respectively. In Fig. 3, ip(z,s) is the distributed current per unit length going through the polymer due

to the ion movement, ik(z,s) represents the leaking current per unit length, and is(z,s) is the surface current on the

electrodes. Rp denotes the through-polymer resistance per unit length, which can be written as R p = R′
p/W , with

R′
p being the polymer resistance per {unit length ·unit width}. Note that by the continuity of current, the current

is(z,s) on the top surface equals that on the bottom surface but with an opposite direction. The surface current

is(0,s) at z = 0 is the total actuation current i(s).
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Fig. 3. Illustration of the distributed surface resistance for the IPMC impedance model.

The following equations capture the relationships between is(z,s), ip(z,s), ik(z,s), φt(z,s) and φb(z,s):

∂φt(z,s)
∂ z

= − r′1
W

is(z,s) , (18)

∂φb(z,s)
∂ z

=
r′1
W

is(z,s) , (19)

∂ is(z,s)
∂ z

= −(ip(z,s)+ ik(z,s)) . (20)

From the potential condition at z = 0, i.e., φt(0,s) = V (s)
2 and φb(0,s) = −V (s)

2 , the boundary conditions for (12)

are derived as:

φ(h,z,s) = φt(z,s)− ip(z,s)r′2/W , (21)

φ(−h,z,s) = φb(z,s)+ ip(z,s)r′2/W . (22)

With (18) and (21), one gets

φ (h,z,s) =
V (s)

2
−
∫ z

0

r′1
W

is (τ ,s)dτ − r′2
W

ip (z,s) , (23)

φ (−h,z,s) = −V (s)
2

+
∫ z

0

r′1
W

is (τ ,s)dτ +
r′2
W

ip (z,s) . (24)

Combining (23) and (24) with (12), one can solve for the functions a1(z,s) and a2(z,s) in the generic expression

for φ(x,z,s). With consideration of the boundary condition (7), one can solve for c2(z,s). With a1(z,s), a2(z,s) and

c2(z,s), one obtains E(h,z,s) from (11):

E (h,z,s) = −φ (h,z,s)
h

γ (s)(s+K)
γ (s)s+K tanh(γ (s))

. (25)
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Define the actuation current along the negative x-axis direction to be positive. The current i p due to the ion movement

can be obtain as

ip (z,s) = −sWD(h,z,s) = −sWκeE (h,z,s) . (26)

The leaking current ik can be obtained as

ik (z,s) =
φt (z,s)−φb (z,s)

R′
p/W

. (27)

With (25), (26) and (27), one can solve the PDE (20) for the surface current is(z,s) with the boundary condition

is(L,s) = 0. The total actuation current I(s) = is(0,s) can be obtained, from which the transfer function for the

impedance can be shown to be

Z2 (s) =
V (s)
I (s)

=
2
√

B(s)

A(s) tanh
(√

B(s)L
) , (28)

where

A(s)
�
=

θ (s)(
1+ r′2θ (s)/W

) +
2W
R′

p
, (29)

B(s)
�
=

r′1
W

A(s) , (30)

θ (s)
�
=

sWκeγ (s)(s+K)
h(sγ (s)+K tanh(γ (s)))

. (31)

See Appendix B for the detailed derivation.

Note that Z2(s) is consistent with Z1(s) (the impedance model ignoring surface resistance and leaking current),

when r′1 → 0, r′2 → 0 and R′
p → ∞. To see this, from (29) and (30), one can write

A(s) =

(
θ (s)

1+ r′2θ (s)/W
+

2W
R′

p

)
→ θ (s) , (32)

B(s) =
r′1
W

A(s) → 0 . (33)

From l’Hôpital’s rule,

lim
a→0

(
a

tanh(a)

)
= 1 . (34)

Taking
√

B(s)L to be a in (34), one obtains

lim
r0→0,r2→0,Rp→∞

Z2(s) =
2

LA(s)
=

2
Lθ (s)

= Z1(s) .
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IV. ACTUATION MODEL

The actuation model consists of a cascade of two modules, as illustrated in Fig. 4. Here H(s) represents the

effect of bending moment generated by the actuation process, through the electromechanical coupling (6), and G(s)

captures the mechanical dynamics of an IPMC beam. These two modules are discussed in more detail below.

Actuation
voltage

Bending
displacement

H s G s

Fig. 4. Actuation model structure.

From (6) and (10), one obtains the generic expression for the stress σ(x,z,s) generated due to actuation:

σ(x,z,s) = 2α0c2(z,s)sinh(β (s)x). (35)

Note that c2(z,s) is available from the derivation of the impedance model, as shown in (56) and (60), when ignoring

and considering the surface resistance effect, respectively. The bending moment M(z,s) is then obtained as

M (z,s) =
h∫

−h

xσ (x,z,s)Wdx =
h∫

−h

2α0Wxc2(z,s)sinh(β (s)x)dx . (36)

Let w(L,s) be the tip displacement of a cantilevered IPMC beam caused by the bending moment M(z,s), in the

absence of mechanical dynamics of the beam. Let H(s) be the transfer function relating w(L,s) to the actuation

voltage V (s). It can be shown that, for the case where the surface resistance is considered,

H (s) =
w(L,s)
V (s)

= −L2α0W
2YI

Kκe (γ (s)− tanh(γ (s)))
(γ (s)s+K tanh(γ (s)))

(
2X (s)

1+ r′2θ (s)/W

)
, (37)

where

X (s)
�
= −

1− sech
(√

B(s)L
)
− tanh

(√
B(s)L

)√
B(s)L

B(s)L2 , (38)

Y is the Young’s modulus of the IPMC, and I = 2
3Wh3 is the moment of inertia of the IPMC. Detailed derivation

of (37) is provided in Appendix C. H(s) for the case where the surface resistance is ignored can be derived in an

analogous and simpler manner, and it is omitted here for brevity.

Since the actuation bandwidth of an IPMC actuator is relatively low (under 10 Hz), it often suffices to capture

the mechanical dynamics G(s) with a second-order system (first vibration mode):

G(s) =
ω2

n

s2 +2ξ ωns+ω2
n

, (39)
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where ωn is the natural frequency of the IPMC beam, and ξ is the damping ratio. The natural frequency ω n can

be further expressed in terms of the beam dimensions and mechanical properties [27]:

ωn = 2.03

√
Yh3

ρmL4 , (40)

where ρm denotes the density of IPMC.

V. MODEL REDUCTION

An important motivation for deriving a transfer function-type actuation model is its potential use for real-time

feedback control. For practical implementation of feedback control design, the model needs to be finite-dimensional,

i.e., being a finite-order, rational function of s. However, in the actuation model derived earlier, H(s) is infinite-

dimensional since it involves non-rational functions including sinh(·), cosh(·), √·, etc. A systematic approach to

model reduction is Padé approximation [28], where one can approximate H(s) with a rational function of specified

order. However, the computation involved is lengthy and the resulting coefficients for the reduced model can be

complex. Therefore, in this paper a much simpler, alternative approach is proposed for model reduction by exploiting

the knowledge of physical parameters and specific properties of hyperbolic functions.

For ease of presentation, decompose H(s) as

H(s) = f (s) ·g(s) ·X(s) , where

f (s) = −L2α0W
2YI

Kκe (γ (s)− tanh(γ (s)))
(γ (s)s+K tanh(γ (s)))

, (41)

g(s) =
2

1+ r′2θ (s)/W
. (42)

Based on the physical parameters (see Table I and Table II in Section VI), |γ(s)|� 10, and K � 10 6, which allows

one to make the approximation in the low frequency range (< 100 Hz):

tanh(γ(s)) ≈ 1 , (43)

γ(s) ≈ h

√
K
d

=: γ . (44)

With (43) and (44), one can simplify f (s) as

f (s) ≈−L2α0W
2YI

Kκe (γ −1))
(γs+K)

. (45)
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To approximate g(s), first note that, with (43) and (44), one can simplify θ (s) (see (31)) as

θ (s) ≈ sWκeγ (s+K)
h(γs+K)

, (46)

which leads to a rational approximation to g(s):

g(s) ≈ 2h(γs+K)
r′2γκes(s+K)+h(γs+K)

. (47)

The following Taylor series expansions of sinh(a) and cosh(a) will be used for approximating X(s):

sinh(a) =
∞

∑
n=0

a2n+1

(2n+1)!
= a+

a3

3!
+

a5

5!
+ · · · ,

cosh(a) =
∞

∑
n=0

a2n

(2n)!
= 1+

a2

2!
+

a4

4!
+ · · · ,

with a =
√

B(s)L. This results in

X (s) =

1+
∞

∑
n=0

(
a2n+2

(2n+1)!
− a2n

(2n)!

)
∞

∑
n=0

a2n+2

(2n)!

≈
1+

m

∑
n=0

(
a2n+2

(2n+1)!
− a2n

(2n)!

)
m

∑
n=0

a2n+2

(2n)!

, (48)

for some finite integer m. When |s| is small (low-frequency range) and
2r′1
R′

p
is small (which is indeed the case, see

parameters in Table I),
∣∣∣√B(s)L

∣∣∣ is small and (48) approximates X(s) well with a small integer m. Note that only

even-degree terms appear in (48), and hence (48) is a function of B(s)L2 instead of
√

B(s)L. Finally, since B(s) is

a rational function of θ (s) and θ (s) is approximated by a rational function (46), one can obtain an approximation

to X(s) by a rational function of s.

Combining (45), (47), and the approximation to X(s), one gets a rational approximation to H(s). Since the

mechanical dynamics G(s) is already rational, one obtains a finite-dimensional actuation model. Note that a reduced

model is still a physical model. In particular, it is described in terms of fundamental physical parameters and is

thus geometrically scalable. This represents a key difference from other low-order, black-box models, in which case

the parameters have no physical meanings and one would have to re-identify the parameters empirically for every

actuator.
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VI. EXPERIMENTAL VERIFICATION OF PROPOSED MODEL

A. Experimental setup

Fig. 5 shows the experimental setup. An IPMC sample is dipped in water and clamped at one end. The IPMC

is subject to voltage excitation generated from the computer (through dSPACE DS1104 and ControlDesk). A laser

displacement sensor is used to measure the bending displacement w(t). A current-amplifier circuit is used to measure

the IPMC actuation current.

Laser
sensor

IPMC Computer & 
dSPACE

Current
measurement

Contact
electrodes & 
clamp

water Tank

Fig. 5. Experimental setup.

B. Identification of Parameters in Impedance Model

In the impedance models Z1(s) and Z2(s), some parameters are physical constants (gas constant R and Faraday’s

constant F), some can be measured directly (absolute temperature T , Young’s modulus Y , actuator dimensions,

surface resistance r1 in z direction and through-polymer resistance Rp), and the others need to be identified through

curve-fitting. Table I lists the physical constants and the parameters obtained through direct measurement and

straightforward calculation. Since |C−∆V | � 1 [18], we take 1−C−∆V ≈ 1. The IPMC materials used in this work

were obtained from Environmental Robots Inc., and the thickness is 360 µm, i.e., h = 180 µm. For an IPMC that is

37 mm long and 5.5 mm wide, the surface resistance (in the z direction) was measured to be R sur = 160 Ω, which

leads to r′1 = RsurW/L = 23.8 Ω. The DC resistance of polymer was measured to be R polymer = 1.8 kΩ, implying

R′
p = RpolymerWL = 0.37 Ω ·m2.

A nonlinear fitting process is used to identify the diffusion coefficient d, the anion concentration C−, the dielectric

constant κe, and the surface resistance density r ′2 in x direction, based upon the empirical impedance response of an

13



TABLE I

PHYSICAL CONSTANTS AND DIRECTLY-MEASURED PARAMETERS.

F R T R′
p Y [10] h r′1

96487 C/mol 8.3143 J/mol·K 300 K 0.37 Ω ·m2 5.71×108 Pa 180 µm 23.8 Ω

IPMC actuator with dimensions 37×5.5 mm. In particular, the impedance model Z2( j2π f ) predicts the magnitude

and phase response of the actuator at frequency f , as a nonlinear function of the parameters. The Matlab function

f minsearch can be used to find the parameters that minimize the squared error between the empirical frequency

response and the model prediction. The identified parameters are listed in Table II. For independent verification

of the proposed model, the identified parameters will be used in predicting impedance behaviors of other IPMC

actuators with different dimensions, as will be seen in Section VI-C.

TABLE II

IDENTIFIED PARAMETERS THROUGH CURVE-FITTING.

d C− κe r′2

3.39×10−7 m2/s 1091 mol/m3 1.48×10−6 F/m 4.5×10−5 Ω ·m2

C. Verification of Impedance Model

Impedance model verification will be conducted on two aspects. First, it will be shown that the model considering

the surface resistance is more accurate than the model ignoring the resistance, by comparing them with the measured

frequency response of an IPMC actuator. Second, the geometric scalability of the proposed model will be confirmed

by the agreement between model predictions and experimental results for IPMC actuators with different dimensions.

1) Effect of surface resistance: In order to examine the difference between the impedance models Z 1(s) and Z2(s),

their model parameters were identified separately through the nonlinear fitting process described in Section VI-B.

The experimental data were obtained for an IPMC actuator with dimensions 37×5.5×0.36 mm. Fig. 6 compares the

predicted frequency response (both magnitude and phase) by each model with the measured frequency response.

It is clear that the model considering the surface resistance shows better agreement than the one ignoring the
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resistance. This indicates that the model incorporating the surface resistance is more effective in capturing the

actuation dynamics of IPMC, and thus it will be used for the remainder of this paper.
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Fig. 6. Comparison of experimental impedance responses with model predictions, with and without consideration of surface resistance.

2) Geometric scalability of the dynamic model.: Three samples with different dimensions (see Table III) were

cut from one IPMC sheet, and were labeled as Big, Slim, and Short for ease of referencing. The model parameters

were first identified for the Slim sample, as discussed in Section VI-B. Without re-tuning, these parameters (except

geometric dimensions) were plugged into (28), i.e., the model Z2(s), for predicting the frequency response for the

Big and Short samples.

TABLE III

DIMENSIONS OF THREE IPMC SAMPLES USED FOR VERIFICATION OF MODEL SCALABILITY.

IPMC beam length (mm) width (mm) thickness (µm)

Big 39 11 360

Slim 37 5.5 360

Short 27 5.5 360

Fig. 7 shows the Bode plots of the frequency responses for the Slim and Big samples. It can be seen that for both

samples, good agreement between the model prediction and the experimental data is achieved. Fig. 8 compares

the frequency responses of the Slim and Short samples. Reasonable match between the model predictions and the

empirical curves is again achieved for both samples. These figures show that the model is geometrically scalable.
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Fig. 7. Impedance model verification for the Big and Slim IPMC samples.
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Fig. 8. Impedance model verification for the Slim and Short IPMC samples.

D. Verification of actuation model

The actuation model has two modules serially connected. The first module is the dynamics of the stress generation

H(s) due to ion movement. The second module is the dynamics of cantilever beam G(s). All parameters of H(s)

have been identified during identification of the impedance model except the stress-charge coupling constant α 0.

The natural frequency ωn and the damping ratio ξ in G(s) can be identified through a free vibration test (an
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alternative way to obtain ωn is through (40)). Fig. 9 shows the damped oscillation of the Big sample, from which

one can determine ωn = 28.9 rad/s and ξ = 0.12. Finally, α0, which is simply a gain parameter in the actuation

model, was identified to be α0 = 0.1 J/C using the magnitude of actuation response measured under a sinusoidal

voltage input.
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Fig. 9. Identification of the parameters in the beam dynamics for the Big sample.

The whole actuation model was verified in experiments by applying sinusoidal actuation signals V (t) with

amplitude 0.2 V and frequency from 0.02 Hz to 20 Hz. The laser sensor was used to measure the bending

displacement w(t) at the free end of the Big sample. The magnitude gain and phase shift from the input V (s)

to the output w(s) were obtained, which show good agreement with the model prediction; see Fig. 10.

Model reduction was then carried out for H(s) using the techniques discussed in Section V, where m = 2 was

used. This resulted in a seventh-order model Ĥ1(s) for approximating H(s). The Matlab command reduce was

further used to reduce Ĥ1(s) to a second-order function Ĥ(s), which leads to a fourth-order reduced model for the

overall actuation response for the Big sample:

P(s) = Ĥ (s) ·G(s) =
0.0046s+0.038
s2 +73.2s+186

· 835
s2 +5.2s+835

. (49)

From Fig. 10, the reduced model also matches closely the empirical response. It will be used for model-based

controller design in the next section.
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Fig. 10. Comparison of the measured actuation response with the proposed full and reduced models for the Big sample.

VII. CONTROLLER-DESIGN EXAMPLE: MODEL-BASED H∞ CONTROL

In this section we provide an example to illustrate the use of the proposed model in model-based controller

design. While other control design methodologies can be adopted, H∞ control has been chosen to accommodate

multiple considerations, including stability in the presence of uncertainty, attenuation of the effect of sensing noise,

and minimization of control effort.

Consider Fig. 11, where the IPMC is represented by some nominal model P(s) with an additive uncertainty ∆ a.

Let P(s) be the reduced model (49) for the Big sample. Then ∆a represents the error between the full actuation

model and P(s) plus the unmodeled nonlinearities. The signals d1 and d2 denote the actuation noise and the sensing

noise, respectively. One is interested in designing a controller K(s) which ensures closed-loop stability and robust

tracking performance in the presence of ∆a and the noises d1 and d2 while taking into account the consumed control

effort. Standard H∞ control techniques [29] are used in the following controller design.

To ensure the closed-loop stability in the presence of ∆a, one needs to first obtain the bound ‖∆a‖∞. Fig. 12

shows the modeling error - the difference between the measured response and P(s), as well as a bound Wa(s) on

the error, where

Wa (s) =
0.13

s2 +37s+1318
. (50)
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Fig. 11. Schematic of the closed-loop control system for an IPMC actuator.

Then ‖∆a‖∞ � ‖Wa (s)‖∞ = 1.1× 10−4. Since the closed-loop system in Fig. 11 can be regarded as the feedback

connection of ∆a and Ms(s) with

Ms (s) =
K (s)

1+P(s)K (s)
, (51)

from the small gain theorem [29], a sufficient condition for internal stability is

‖Ms (s)‖∞ <
1

‖Wa (s)‖∞
= 9057 . (52)
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Fig. 12. The modeling error and its bound Wa(s).

To proceed with the controller design, define two artificial outputs z1 and z2 as in Fig. 11, where the performance

weight We(s) and the control weight Wu(s) are chosen to be

We(s) =
s+164.9

5.32(s+3.1×10−3)
, Wu(s) =

100(s+0.35)
s+3.14×105 .

See [29] for guidelines on choosing these weight functions. Now ignore the ∆a block, and design K(s) to minimize

the H∞ norm of the transfer function from {d1,d2}T to {z1,z2}T . This would minimize the effect of the noises on
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the tracking performance and the control effort. The resulting controller is

K (s) =
29527(s+2.569)

(s+0.00314)(s+4.952)
.

From (51), one can calculate ‖Ms (s)‖∞ = 5529, which satisfies the internal stability condition (52) under uncertainty.

The designed H∞ controller was implemented for a tracking control of the Big IPMC sample, where the reference

r used was

r (t) = 0.133sin(0.02πt)+0.0665sin(0.06πt) mm .

The laser sensor for measuring the tip displacement has a noise level of ±0.02 mm. For comparison purposes, a

PI controller

K1(s) = 3000(1+
1
s
)

was also implemented together with a low-pass filter

F(s) =
961

s2 +62s+961

for the output measurement. Note that a PID controller was explored for IPMC actuators by Richardson et al. [30].

Fig. 13 shows the IPMC tracking performance under model-based H∞ control and Fig. 14 shows the tracking

performance under PI control. It can be seen that the tracking error under H∞ control is almost at the level of

sensing noise, while the error under PI control is about twice as large. Fig. 15 further compares the controller

output under H∞ control and PI control, which shows that the H∞ control requires lower control effort. Therefore,

controller design based on the reduced model is effective.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper a dynamic model for IPMC actuators was developed by solving the physics-governing PDE

analytically in the Laplace domain. It is distinguished from existing modeling work of IPMC actuators in that

it is amenable to model reduction and control design while capturing fundamental physics. The modeling work

bridges the traditional gap between the physics-based perspective and the system-theoretic perspective on these novel

but sophisticated materials. The model also incorporates the effect of surface electrode resistance in an integrative
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Fig. 13. Experimental results on tracking of IPMC actuator under H∞ control.
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Fig. 14. Experimental results on tracking of IPMC actuator under PI control.

manner. The compact, explicit, transfer-function representation of the physics-based model can be reduced to low-

order models for real-time feedback control purposes.

A number of experimental results were presented to demonstrate the geometric scalability of the model. Due to

the physical nature of the model, the agreement between model predictions and experimental results also provides

insight into the underlying actuation mechanisms of IPMC materials. An H∞ controller based on the reduced

low-order model has been designed and implemented in real-time tracking experiments. Experimental results have

proven that the proposed model is faithful and suitable for control design.
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Fig. 15. Comparison of controller outputs under H∞ control and PI control.

Future work will be focused on two aspects. First, the proposed actuation model will be extended to incorporate

material nonlinearities which become pronounced at large actuation levels. The nonlinearities include nonlinear

elasticity, hysteresis [31], and the dependence of parameters (such as surface resistance) on the curvature output

[24]. The actuation model in this paper was assumed to be a cascade of stress-generation module H(s) and linear

beam dynamics G(s). However, the two-way coupling effects existing between the stress-generation module and

the beam dynamics module, as indicated by the curvature-dependent electrical parameters, introduce challenging

nonlinearities in modeling and control of IPMC materials that require further study.

The second direction of future work is the application of the proposed modeling approach to control of micro-

manipulation [10] and biomimetic robots [9]. There the model has to be extended to account for force interactions

with external objects.

APPENDIX A

DERIVATION OF IMPEDANCE MODEL WITHOUT SURFACE RESISTANCE

From (13) and (14), one can obtain a1 (z,s) and a2 (z,s):

a1 (z,s) = −2c2 (z,s)
sinh(β (s)h)

hκeβ 2 (s)
− V (s)

2h
, (53)

a2 (z,s) = 0 . (54)
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With (53), (54) and (12), one can write φ(x,z,s) as

φ (x,z,s) =
2c2 (z,s)
κeβ 2 (s)

( x
h

sinh(β (s)h)− sinh(β (s)x)
)

+
V (s)
2h

x . (55)

Using the boundary condition (7), one gets

c2 (z,s) = − Kκeγ2 (s)V (s)
4h2 cosh(γ (s))(sγ (s)+K tanh(γ (s)))

, (56)

where γ(s) = hβ (s). With (11), (53) and (56), the expression for E(h,z,s) can then be obtained as in Eq. (15). The

charge Q(s) is then

Q(s) =
∫ W

0

∫ L

0
κeE(h,s)dzdy = −V (s)WLκe

2h
γ (s)(s+K)

(sγ (s)+K tanh(γ (s)))
.

APPENDIX B

DERIVATION OF IMPEDANCE MODEL WITH SURFACE RESISTANCE

Combining (23) and (24) with (12), one can solve for the functions a1(z,s) and a2(z,s):

a1 (z,s) =
2
∫ z

0
r′1
W is (τ ,s)dτ +2

r′2
W ip (z,s)−V (s)

2h
−2c2 (z,s)

sinh(β (s)h)
hκeβ 2 (s)

, (57)

a2 (z,s) = 0 . (58)

This leads to

φ (x,z,s) =
2c2 (z,s)
κeβ 2 (s)

( x
h

sinh(β (s)h)− sinh(β (s)x)
)

+
φ (h,z,s)

h
x . (59)

Using the boundary condition (7), one can get

c2 (z,s) = − Kκeγ2 (s)φ (h,z,s)
2h2 cosh(γ (s))(sγ (s)+K tanh(γ (s)))

. (60)

With (57) and (60), one can obtain E(h,z,s) as shown in (25).

Next we express ip and ik in terms of is. From (25) and (26),

ip (z,s) =
φ (h,z,s)

h
sWκeγ (s)(s+K)

(γ (s)s+K tanh(γ (s)))

=
(

V (s)
2

−
∫ z

0

r′1
W

is (τ ,s)dτ− r′2
W

ip (z,s)
)

θ (s) ,

where the second equality is from (23) and (31). This results in

ip(z,s) =
(

V (s)
2

−
∫ z

0

r′1
W

is (τ ,s)dτ
)

θ (s)
1+ r2θ (s)

. (61)
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From (21, (22), and (27), one obtains

ik (z,s) =
φ (h,z,s)−φ (−h,z,s)+2ip(z,s)r′2/W

R′
p/W

=
2φ (h,z,s)+2ip(z,s)r′2/W

R′
p/W

=
2W
R′

p

(
V (s)

2
−
∫ z

0

r′1
W

is (τ ,s)dτ
)

, (62)

where the last equality is from (23) and (24).

Combining (20), (61), (62), one gets

−∂ is (z,s)
∂ z

=
(

V (s)
2

−
∫ z

0

r′1
W

is (τ ,s)dτ
)(

θ (s)
1+ r′2θ (s)/W

+
2W
R′

p

)

=
A(s)V (s)

2
−B(s)

∫ z

0
is (τ ,s)dτ , (63)

where A(s) and B(s) are as defined in (29) and (30).

Eq. (63) is an integro-differential equation for is. To solve this equation, we introduce the unilateral Laplace

transform for functions of the length coordinate z. The new Laplace variable will be denoted as p since s has

already been used for the transform of time functions. For instance, the transform of is(z,s) will be defined as

Is(p,s)
�
=
∫ ∞

0
is(z,s)e−pzdz.

Now perform the Laplace transform with respect to the z variable on both sides of (63). Using properties of Laplace

transforms [32], [33], one gets

pIs(p,s)− is(0,s) = −A(s)V(s)
2

1
p

+B(s)
Is(p,s)

p
. (64)

Solving for Is(p,s), one obtains

Is(p,s) =
p

p2 −B(s)
is(0,s)− 1

p2 −B(s)
A(s)V(s)

2
, (65)

which can be rewritten through partial fraction expansion as:

Is (p,s) =
A(s)V (s)

2

(
q1 (s)

p−√B(s)
+

q2 (s)
p+
√

B(s)

)
+ is (0,s)

(
0.5

p−√B(s)
+

0.5

p+
√

B(s)

)
, (66)

with

q1(s) = − 1

2
√

B(s)
, q2(s) =

1

2
√

B(s)
.
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The surface current is(z,s) is then obtained from (66) using the inverse Laplace transform of Is(p,s):

is (z,s) = is (0,s)cosh
(√

B(s)z
)
− A(s)V (s)

2
√

B(s)
sinh

(√
B(s)z

)
. (67)

Refer to Fig. 3. Since the circuit is open at z = L, the following holds:

is(L,s) = 0 . (68)

Plugging z = L into (67) and using (68), one obtains the actuation current is(0,s) as

is (0,s) =
V (s)A(s) tanh

(√
B(s)L

)
2
√

B(s)
. (69)

APPENDIX C

DERIVATION OF EQ. (37) IN ACTUATION MODEL

From (36) and (60),

M (z,s) =
h∫

−h

2α0Wxc2 (z,s)sinh(β (s)x)dx

= −2α0KWκe (γ (s)− tanh(γ (s)))φ (h,z,s)
(sγ (s)+K tanh(γ (s)))

.

From linear beam theory [34], the curvature 1
R(z,s) , where R(z,s) denotes the radius of curvature, can be written as

1
R(z,s)

=
M (z,s)

YI

= −2α0KWκe (γ (s)− tanh(γ (s)))φ (h,z,s)
YI (sγ (s)+K tanh(γ (s)))

= −α0KWκe (γ (s)− tanh(γ (s)))
YI (sγ (s)+K tanh(γ (s)))

· V (s)−2
∫ z
0

r′1
W is (τ ,s)dτ

1+ r′2θ (s)/W
, (70)

where the last equality follows from (23) and (61).

For relatively small bending curvature,

1
R(z,s)

≈ ∂ 2w(z,s)
∂ z2 . (71)

Solving (71) with boundary conditions w(0,s) = 0 and w ′(0,s) = 0, one can get

w(L,s) = −1
2

α0W
YI

Kκe (γ (s)− tanh(γ (s)))
(γ (s)s+K tanh(γ (s)))

· V (s)L2 −4
∫ L

0

∫ z
0

∫ z′
0

r′1
W is (τ ,s)dτdz′dz

1+ r′2θ (s)/W
. (72)

Using (67) and (69), one can show

V (s)L2 −4
∫ L

0

∫ z

0

∫ z′

0

r′1
W

is (τ ,s)dτdz′dz = 2L2X(s)V(s),

where X(s) is as defined in (38). Eq. (37) then follows.
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NOMENCLATURE

α0 charge-stress coupling constant (J/C)

β (s) defined via β 2(s) = s+K
d

∆V volumetric change (m3/mol)

γ(s) β (s)h

κe dielectric permittivity (F/m)

ωn natural frequency of beam dynamics (rad/s)

φ electric potential (V)

ρ charge density (C/m3)

σ induced stress (Pa)

θ (s) see Eq. (31)

ξ damping ratio of beam dynamics

A(s) see Eq. (29)

B(s) see Eq. (30)

C+ cation concentration (mol/m3)

C− anion concentration (mol/m3)

D electric displacement (C/m2)

d ionic diffusivity (m2/s)

E electric field (V/m)

F Faraday’s constant (C/mol)

h distance from neutral axis to surface (m)

I moment of inertia (m4)

ik through-polymer leaking current density (A/m)

ip through-polymer ionic current density (A/m)

is surface current (A)

J ion flux vector (A/m2)
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K see Eq. (8)

L length of IPMC beam (m)

M bending moment (N ·m)

R gas constant (J/mol ·K)

r′1 surface resistance per length and width in z direction (Ω)

r′2 surface resistance per length and width in x direction (Ω ·m2)

R′
p Through-polymer resistance per length and width (Ω ·m2)

v free solvent velocity field (m/s)

W width of IPMC beam (m)

w tip deflection (m)

X(s) see Eq. (38)

Y Young’s modulus (Pa)
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