HW 3, Fluid Dynamics

Deivid Pugal

February 21, 2007

0.1 Problem \#1

Lets find out how to find the mass of the atmosphere. We know the relations $P(z)=P(0) \exp \left(\frac{-z}{z_{T}}\right)$ and $z_{t}=\frac{k_{B} T}{m g}$, where z denotes distance from the surface of the Earth. Using the ideal gas law, we can write the following relations:

$$
P V=N k_{B} T \rightarrow P=\frac{m N}{V} \frac{k_{B} T}{m} \rightarrow P=\rho \frac{k_{B} T}{m}
$$

where m is the average mass of an air molecule. We also should consider limits. In my calculations I assume that thickness of the atmosphere is about 100 km and I use $R_{a t m}=100 \mathrm{~km}$ as upper limit in the integral I'm about to calculate. Knowing that, it could be written for the mass of the atmosphere:

$$
\begin{aligned}
M_{a} & =\int_{0}^{R_{a t m}} 4 \pi(R+z)^{2} \rho(z) d z \\
& =\int_{0}^{R_{a t m}} 4 \pi R^{2} P(0) \exp \left(-\frac{z}{z_{T}}\right) \frac{m}{k_{B} T} d z \\
& =\frac{4 \pi M_{a i r} P(0) R^{2}}{k_{B} N_{A} T} \int_{0}^{R_{a t m}} \exp \left(-\frac{z}{z_{T}}\right) d z \\
& =\frac{4 \pi M_{a i r} P(0) R^{2}}{R T}\left[-\frac{k_{B} T}{m g}\left(\exp \left(-\frac{R_{a t m}}{z_{t}}\right)-1\right)\right]
\end{aligned}
$$

I simplified the calculation a bit: $(R+z)^{2} \approx R^{2}$, because maximum z is about 100 km , but $\mathrm{R}=6400 \mathrm{~km}$. Using the derived formula, we'll get mass of the atmosphere

$$
M_{a}=5.14 \cdot 10^{18} \mathrm{~kg}
$$

Compared to the mass of Earth, which is about $5.9 \cdot 10^{24} \mathrm{~kg}$, the mass of the atmosphere is about a million times smaller.

From the site http://www.eia.doe.gov/oiaf/ieo/emissions.html I got data of CO2 emission in 2003 and from the site http://www.eia.doe.gov/iea/carbon.html I got information about 2004. The annual total emission is about 27,000 million metric tons which is about $2.7 \cdot 10^{13} \mathrm{~kg}$ and it is about 100,000 times smaller amount than the atmosphere is according to our calculations.

0.2 Problem \#2

For self gravitational body we know that the equation of hydrostatic equilibrium is

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\frac{r^{2}}{\rho} \frac{\partial P}{\partial r}\right)=-4 \pi G \rho
$$

As we know that $P(\rho)=\frac{C}{2} \rho^{2}$, where $C=\frac{P_{0}}{\rho_{0}^{2}}$, we can write $\frac{\partial P}{\partial r}$ as

$$
\frac{\partial P}{\partial r}=C \rho \frac{\partial \rho}{\partial r}
$$

By replacing this result into the initial equation and later considering the fact that $r=x R$, we'll get

$$
\begin{aligned}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} C \frac{\partial \rho}{\partial r}\right) & =-4 \pi G \rho \\
\frac{1}{x^{2} R^{2}} \frac{\partial}{\partial(x R)}\left(x^{2} R^{2} \frac{\partial \rho}{\partial(x R)}\right) & =\frac{-4 \pi G \rho}{C} \\
\frac{1}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial \rho}{\partial x}\right) & =-\frac{4 \pi G R^{2} \rho}{C}
\end{aligned}
$$

As we check the unit, we can see that the dimensionless variable, that controls the solution, is $\frac{R^{2} G}{C}$, because the unit of the variable is $\left[\frac{R^{2} G}{C}\right]=\frac{m^{2} m^{3} s^{2} k g}{k g \cdot s^{2} m^{5}}=1$. For further calculations the constant $\frac{4 \pi G R^{2}}{C}$ is denoted as k^{2}. So the equation is:

$$
\begin{equation*}
\frac{1}{x^{2}} \frac{\partial}{\partial x}\left(x^{2} \frac{\partial \rho}{\partial x}\right)=-k^{2} \rho \tag{1}
\end{equation*}
$$

0.2.1 Solving the equation.

Using the example of quantum mechanics, Schrödinger equation, where radial part was solved by replacing $\rho=\frac{u(x)}{x}$, we can also write the equation 1 as follows:

$$
\begin{align*}
\frac{1}{x^{2}} x \frac{\partial^{2} u}{\partial x^{2}} & =-k^{2} \frac{u}{x} \\
\frac{\partial^{2} u}{\partial x^{2}} & =-k^{2} u \tag{2}
\end{align*}
$$

because $\frac{\partial \rho}{\partial x}=\frac{x \frac{\partial u}{\partial x}-u}{x^{2}} \rightarrow \frac{\partial}{x}\left(x^{2} \frac{\partial \rho}{\partial x}\right)=x \frac{\partial^{2} u}{\partial x^{2}}$.
General solution for Eq. 2 is $u=A \cdot \exp (i k x)+B \cdot \exp (-i k x)$. Considering the boundary conditions $u(1)=0$, it could be written that $A \cdot \exp (i k)+B$. $\exp (-i k)=0 \rightarrow B=-A \cdot \exp (2 i k)$. Now we can write for u

$$
\begin{aligned}
u & =A e^{i k x}-A e^{2 i k-i k x} \\
u & =A e^{i k}\left(e^{i k x-i k}-e^{i k-i k x}\right) \\
u & =2 i A e^{i k} \frac{\left(e^{i k(x-1)}-e^{-i k(x-1)}\right)}{2 i} \\
\rho & =\frac{L}{x} \sin (k(x-1))
\end{aligned}
$$

Now it is possible to find constant L from the relation $M=4 \pi R^{3} \int_{0}^{1} x^{2} \rho(x) d x$

$$
\begin{aligned}
M & =4 \pi R^{3} L \int_{0}^{1} x \cdot \sin (k(x-1)) d x \\
M & =4 \pi R^{3} L\left(\frac{\sin (k(x-1))}{k^{2}}-\frac{x \cdot \cos (k(x-1))}{k}\right)_{0}^{1}
\end{aligned}
$$

$$
\begin{aligned}
M & =4 \pi R^{3} L\left(-\frac{1}{k}-\frac{\sin (-k)}{k^{2}}\right) \\
M & =\frac{-4 \pi R^{3} L}{k}(1-\operatorname{sinc}(k))
\end{aligned}
$$

So the constant L would be

$$
L=-\frac{k M}{4 \pi R^{3}(1-\operatorname{sinc}(k))},
$$

and $\bar{\rho}$ would be

$$
\bar{\rho}=-\frac{3 L}{k}(1-\operatorname{sinc}(k))=\frac{3 M}{4 \pi R^{3}} .
$$

Now le'ts write down the ρ and analyze it a bit.

$$
\rho=-\frac{k M \cdot \sin (k(x-1))}{x \cdot 4 \pi R^{3}(1-\operatorname{sinc}(k))} .
$$

To get a reasonable result, we have to assume that there are no oscillations in range of 0 to 1 for x . If k would be $k=[0, \pi]$, the term $(1-\operatorname{sinc}(k))$ would be positive (and zero when $\mathrm{k}=0$) and \sin function would be definitely negative or zero. So the ρ would be positive and that's what we basically need. For example, the shape of the ρ is shown in Figure 1.

0.2.2 Figure of $\rho / \bar{\rho}$

First of all, let's find $\rho / \bar{\rho}$

$$
\begin{equation*}
\rho / \bar{\rho}=-\frac{k \cdot \sin (k(x-1))}{x \cdot 3(1-\operatorname{sinc}(k))} . \tag{3}
\end{equation*}
$$

As we can see, $\bar{\rho}$ does not depend on x . So basically the plot of the Eq. 3 would look very similar to the plot in Figure 1. It's only matter of choosing constants

0.3 Linearizing the equations

Equations from Afternote.2.tex:

$$
\begin{align*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{u}) & =0 \tag{4}\\
\left(\frac{\partial}{\partial t}+\vec{u} \cdot \nabla\right) \vec{u} & =\frac{\vec{F}}{m}-\frac{1}{\rho} \nabla P+\frac{D_{\eta}}{3} \nabla(\nabla \cdot \vec{u})+D_{\eta} \nabla^{2} \vec{u} \tag{5}\\
\left(\frac{\partial}{\partial t}+\vec{u} \cdot \nabla\right) \theta & =-\frac{1}{C_{v}}(\nabla \vec{u}) \theta+D_{\kappa} \nabla^{2} \theta \tag{6}
\end{align*}
$$

After linearizing with variables $\rho+\delta \rho, P_{0}+\delta P, T_{0}+\delta T, \delta \vec{u} \neq 0$ and considering Eq. 36 from Afternote.2.tex, which is $\delta P=\left(\frac{\partial P}{\partial \rho}\right) \delta \rho+\left(\frac{\partial P}{\partial \theta}\right) \delta \theta=c_{0}^{2} \delta \rho+V \delta \theta=$

Figure 1: The shape of the ρ for different values of k. X axis is value of x . Y axis is the value of ρ. The blue color is for $k=\pi$, the red color is for $k=\frac{\pi}{2}$, the green color is for $k=\frac{\pi}{3}$, and the violet is for $k=\frac{\pi}{100}$.
$c_{0}^{2} \delta \rho+V \delta T$ approximately. The system becomes

$$
\begin{aligned}
\frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot \delta \vec{u} & =0 \\
\frac{\partial \delta \vec{u}}{\partial t} & =-\frac{1}{\rho_{0}} \nabla\left(c_{0}^{2} \delta \rho+V \delta T\right)+\frac{D_{\eta}}{3} \nabla(\nabla \delta \vec{u})+D_{\eta} \nabla^{2} \delta \vec{u} \\
\frac{\partial \delta T}{\partial t} & =-\frac{T_{0}}{C_{v}} \nabla \delta \vec{u}+D_{\kappa} \nabla^{2} \delta T
\end{aligned}
$$

Next we'll insert wavelike disturbances to the equation:

$$
\begin{aligned}
\delta \rho & =A_{\rho} e^{i(\vec{k} \vec{x}-w t)} \\
\delta \vec{u} & =\vec{A}_{u} e^{i(\vec{k} \vec{x}-w t)} \\
\delta T & =A_{T} e^{i(\vec{k} \vec{x}-w t)}
\end{aligned}
$$

After replacing we'll get the set of equations:

$$
\begin{align*}
-i \omega A_{\rho}+\rho_{0} i \vec{k} \vec{A}_{u} & =0 \Rightarrow A_{\rho}=\frac{\rho_{0} \vec{k} \vec{A}_{u}}{\omega} \tag{7}\\
-i \omega \overrightarrow{A_{u}} & =-\frac{i}{\rho_{0}}\left(A_{\rho} \vec{k} c_{0}^{2}+A_{T} V \vec{k}\right)-\frac{4 D_{\eta} \vec{A}_{u} k^{2}}{3} \tag{8}\\
-i \omega A_{T} & =-\frac{T_{0} i \vec{k} \overrightarrow{A_{u}}}{C_{v}}-D_{\kappa} k^{2} A_{T} \Rightarrow A_{T}=\frac{T_{0} i \vec{k} \vec{A}_{u}}{C_{v}\left(i \omega-D_{\kappa} k^{2}\right)} \tag{9}
\end{align*}
$$

By inserting Eq. 7 and Eq. 9 into the Eq. 8, the result we'll get is

$$
\begin{aligned}
-i \omega \overrightarrow{A_{u}} & \left.=-\frac{i}{\rho_{o}}\left(\frac{\rho_{0} k^{2} c_{0}^{2} \overrightarrow{A_{u}}}{\omega}+\frac{T_{0} i k^{2} V \vec{A}_{u}}{C_{v}\left(i \omega-D_{\kappa} k^{2}\right)}\right)-\frac{4}{3} D_{\eta} k^{2} \overrightarrow{A_{u}} \right\rvert\, \cdot \frac{i}{\overrightarrow{A_{u}}}, \\
\omega & =\frac{k^{2} c_{0}^{2}}{\omega}+\frac{T_{0} i k^{2} V}{C_{v} i \omega \rho_{0}-\kappa k^{2}}-\frac{4}{3} D_{\eta} i k^{2} \\
\omega & =\frac{k^{2}}{\omega}\left(c_{0}^{2}+\frac{T_{0} i V}{C_{v} i \rho_{0}-\kappa \frac{k^{2}}{\omega}}\right)-\frac{4 k^{2}}{3} i D_{\eta}
\end{aligned}
$$

if we denote $\frac{k^{2}}{\omega}$ by X, the equation would look like little bit better (not as good as I expected actually..)

$$
\begin{aligned}
\omega & =X\left(c_{0}^{2}+\frac{T_{0} i V}{C_{v} i \rho_{0}-\kappa X}\right)-\frac{4 k^{2}}{3} i D_{\eta} \\
\omega & =X\left(c_{0}^{2}-\frac{T_{0} i V \cdot\left(\kappa X+C_{v} \rho_{0}\right)}{C_{v}^{2} \rho_{0}^{2}+\kappa^{2} X^{2}}\right)-\frac{4 k^{2}}{3} i D_{\eta}
\end{aligned}
$$

considering all those constants in the equation, we can write little bit nicer form of the equation (without showing the constants explicitly)

$$
\omega=X\left(c_{0}^{2}-\frac{A X+B}{D+\kappa^{2} X^{2}}\right)-F k^{2}
$$

I tried also getting the relation using determinant or different methods. So far I haven't had success to get a nice and simple result.

About the (c). If I have understood correctly, then the mechanism are not additive. Though the units of those transport coefficients are the same, the mechanism (equations describing the attenuation) could not be added...

