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0.1 Problem #1

Lets �nd out how to �nd the mass of the atmosphere. We know the relations
P (z) = P (0)exp(−z

zT
) and zt = kBT

mg , where z denotes distance from the surface
of the Earth. Using the ideal gas law, we can write the following relations:

PV = NkBT → P =
mN

V

kBT

m
→ P = ρ

kBT

m
,

where m is the average mass of an air molecule. We also should consider limits.
In my calculations I assume that thickness of the atmosphere is about 100km
and I use Ratm = 100km as upper limit in the integral I'm about to calculate.
Knowing that, it could be written for the mass of the atmosphere:

Ma =
∫ Ratm

0

4π(R + z)2ρ(z)dz

=
∫ Ratm

0

4πR2P (0)exp

(
− z

zT

)
m

kBT
dz

=
4πMairP (0)R2

kBNAT

∫ Ratm

0

exp

(
− z

zT

)
dz

=
4πMairP (0)R2

RT

[
−kBT

mg

(
exp

(
−Ratm

zt

)
− 1
)]

I simpli�ed the calculation a bit: (R + z)2 ≈ R2, because maximum z is about
100km, but R=6400km. Using the derived formula, we'll get mass of the atmo-
sphere

Ma = 5.14 · 1018kg.

Compared to the mass of Earth, which is about 5.9 · 1024kg, the mass of the
atmosphere is about a million times smaller.

From the site http://www.eia.doe.gov/oiaf/ieo/emissions.html I got data of
CO2 emission in 2003 and from the site http://www.eia.doe.gov/iea/carbon.html
I got information about 2004. The annual total emission is about 27,000 million
metric tons which is about 2.7 · 1013kg and it is about 100, 000 times smaller
amount than the atmosphere is according to our calculations.

0.2 Problem #2

For self gravitational body we know that the equation of hydrostatic equilibrium
is

1
r2

∂

∂r

(
r2

ρ

∂P

∂r

)
= −4πGρ.

As we know that P (ρ) = C
2 ρ2, where C = P0

ρ2
0
, we can write ∂P

∂r as

∂P

∂r
= Cρ

∂ρ

∂r
.
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By replacing this result into the initial equation and later considering the fact
that r = xR, we'll get

1
r2

∂

∂r

(
r2C

∂ρ

∂r

)
= −4πGρ,

1
x2R2

∂

∂(xR)

(
x2R2 ∂ρ

∂(xR)

)
=

−4πGρ

C

1
x2

∂

∂x

(
x2 ∂ρ

∂x

)
= −4πGR2ρ

C

As we check the unit, we can see that the dimensionless variable, that controls

the solution, is R2G
C , because the unit of the variable is

[
R2G

C

]
= m2m3s2kg

kg·s2m5 = 1.

For further calculations the constant 4πGR2

C is denoted as k2. So the equation
is:

1
x2

∂

∂x

(
x2 ∂ρ

∂x

)
= −k2ρ. (1)

0.2.1 Solving the equation.

Using the example of quantum mechanics, Schrödinger equation, where radial

part was solved by replacing ρ = u(x)
x , we can also write the equation 1 as

follows:

1
x2

x
∂2u

∂x2
= −k2 u

x
∂2u

∂x2
= −k2u, (2)

because ∂ρ
∂x = x ∂u

∂x−u

x2 → ∂
x

(
x2 ∂ρ

∂x

)
= x∂2u

∂x2 .

General solution for Eq. 2 is u = A · exp(ikx) + B · exp(−ikx). Considering
the boundary conditions u(1) = 0, it could be written that A · exp(ik) + B ·
exp(−ik) = 0 → B = −A · exp(2ik). Now we can write for u

u = Aeikx −Ae2ik−ikx

u = Aeik
(
eikx−ik − eik−ikx

)
u = 2iAeik

(
eik(x−1) − e−ik(x−1)

)
2i

ρ =
L

x
sin (k(x− 1)) .

Now it is possible to �nd constant L from the relation M = 4πR3
∫ 1

0
x2ρ(x)dx

M = 4πR3L

∫ 1

0

x · sin(k(x− 1))dx

M = 4πR3L

(
sin(k(x− 1))

k2
− x · cos(k(x− 1))

k

)1

0

2



M = 4πR3L

(
−1

k
− sin(−k)

k2

)
M =

−4πR3L

k
(1− sinc(k)) .

So the constant L would be

L = − kM

4πR3(1− sinc(k))
,

and ρ̄would be

ρ̄ = −3L

k
(1− sinc(k)) =

3M

4πR3
.

Now le'ts write down the ρ and analyze it a bit.

ρ = − kM · sin(k(x− 1))
x · 4πR3(1− sinc(k))

.

To get a reasonable result, we have to assume that there are no oscillations in
range of 0 to 1 for x. If k would be k = [0, π], the term (1− sinc(k)) would be
positive (and zero when k=0) and sin function would be de�nitely negative or
zero. So the ρwould be positive and that's what we basically need. For example,
the shape of the ρ is shown in Figure 1.

0.2.2 Figure of ρ/ρ̄

First of all, let's �nd ρ/ρ̄

ρ/ρ̄ = − k · sin(k(x− 1))
x · 3(1− sinc(k))

. (3)

As we can see, ρ̄ does not depend on x. So basically the plot of the Eq. 3 would
look very similar to the plot in Figure 1. It's only matter of choosing constants

0.3 Linearizing the equations

Equations from Afternote.2.tex:

∂ρ

∂t
+∇ · (ρ~u) = 0, (4)(

∂

∂t
+ ~u · ∇

)
~u =

~F

m
− 1

ρ
∇P +

Dη

3
∇(∇ · ~u) + Dη∇2~u, (5)(

∂

∂t
+ ~u · ∇

)
θ = − 1

Cv
(∇~u)θ + Dκ∇2θ (6)

After linearizing with variables ρ+δρ, P0 +δP , T0 +δT , δ~u 6= 0 and considering

Eq. 36 from Afternote.2.tex, which is δP =
(

∂P
∂ρ

)
δρ +

(
∂P
∂θ

)
δθ = c2

0δρ + V δθ =

3



Figure 1: The shape of the ρ for di�erent values of k. X axis is value of x. Y
axis is the value of ρ. The blue color is for k = π, the red color is for k = π

2 ,
the green color is for k = π

3 , and the violet is for k = π
100 .
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c2
0δρ + V δT approximately. The system becomes

∂δρ

∂t
+ ρ0∇ · δ~u = 0,

∂δ~u

∂t
= − 1

ρ0
∇
(
c2
0δρ + V δT

)
+

Dη

3
∇(∇δ~u) + Dη∇2δ~u,

∂δT

∂t
= − T0

Cv
∇δ~u + Dκ∇2δT.

Next we'll insert wavelike disturbances to the equation:

δρ = Aρe
i(~k~x−wt),

δ~u = ~Auei(~k~x−wt),

δT = AT ei(~k~x−wt).

After replacing we'll get the set of equations:

−iωAρ + ρ0i~k ~Au = 0 ⇒ Aρ =
ρ0

~k ~Au

ω
(7)

−iω ~Au = − i

ρ0

(
Aρ

~kc2
0 + AT V ~k

)
− 4Dη

~Auk2

3
(8)

−iωAT = −T0i~k ~Au

Cv
−Dκk2AT ⇒ AT =

T0i~k ~Au

Cv(iω −Dκk2)
(9)

By inserting Eq. 7 and Eq. 9 into the Eq. 8, the result we'll get is

−iω ~Au = − i

ρo

(
ρ0k

2c2
0

~Au

ω
+

T0ik
2V ~Au

Cv(iω −Dκk2)

)
− 4

3
Dηk2 ~Au| ·

i

~Au

,

ω =
k2c2

0

ω
+

T0ik
2V

Cviωρ0 − κk2
− 4

3
Dηik2,

ω =
k2

ω

(
c2
0 +

T0iV

Cviρ0 − κk2

ω

)
− 4k2

3
iDη

if we denote k2

ω by X, the equation would look like little bit better (not as good
as I expected actually.. )

ω = X

(
c2
0 +

T0iV

Cviρ0 − κX

)
− 4k2

3
iDη

ω = X

(
c2
0 −

T0iV · (κX + Cvρ0)
C2

vρ2
0 + κ2X2

)
− 4k2

3
iDη

considering all those constants in the equation, we can write little bit nicer form
of the equation (without showing the constants explicitly)

ω = X

(
c2
0 −

AX + B

D + κ2X2

)
− Fk2.
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I tried also getting the relation using determinant or di�erent methods. So far
I haven't had success to get a nice and simple result.

About the (c). If I have understood correctly, then the mechanism are not
additive. Though the units of those transport coe�cients are the same, the
mechanism (equations describing the attenuation) could not be added...

6


