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An approach for electronic structure calculations is described that generalizes both the pseu
dopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The
method allows high-quality first-principles molecular-dynamics calculations to be performed using
the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be
used to treat first-row and transition-metal elements with affordable effort and provides access to the
full wave function. The augmentation procedure is generalized in that partial-wave expansions are
not determined by the value and the derivative of the envelope function at some muffin-tin radius,
but rather by the overlap with localized projector functions. The pseudopotential approach based
on generalized separable pseudopotentials can be regained by a simple approximation.

I. INTRODUCTION

In the past few decades, electronic structure calcula
tions have made significant contributions to our under
standing of solid-state properties. The majority of such
calculations are based on the local-density approximation
(LDA) of the density-functional theory.l,2 The density
functional theory maps the ground state of an interacting
electron gas onto the ground state of noninteracting elec
trons, which experience an effective potential.

Numerous methods have been developed to solve the
resulting one-particle Schrodinger equation of the LDA.
The most widely used electronic structure methods can
be divided into two classes: (i) the linear methods'' de
veloped by Andersen from the augmented-plane-wave
(APW) method'v'' and the Korringa-Kohn-Rostocker
method6 ,7 and (ii) the pseudopotential method based on
norm-conserving ab initio pseudopotentials invented by
Hamann, Schliiter, and Chiang." A third class, primar
ily employed in chemistry, uses Gaussian basis sets to
expand the full wave functions.

The linear methods can be subdivided into a vari
ety of methods ranging from the most accurate linear
augmented-plane-wave (LAPW) method. to the linear
muffin-tin orbital (LMTO) method, which, in a simpli
fied version, even allows some electronic structure calcu
lations to be performed with paper and pencil. The lin
ear methods deal with the full wave functions and treat
all elements in the Periodic Table, i.e., S-, p-, d-, and
I-electron systems, on the same footing.

The pseudopotential method, when used in combina
tion with a plane-wave basis set, on the other hand, has
the advantage of formal simplicity. When applied to ei
ther first-row elements or systems with d or f electrons,
even pseudopotentials become very "hard," so that in
practice either very large or complicated basis sets in
stead of plane waves have to be used. Similarly, treating
semicore states as valence states, which is often necessary
for early transition-metal elements and alkali and alkaline
earth metals, results in hard pseudopotentials and affects

the transferability of the pseudopotential. Vanderbilt's
ultrasoft pseudopotentials'i'" have improved this situa
tion significantly by relaxing the norm-conservation con
dition that is usually imposed on the pseudopotential ap
proach. This method also allows first-row and transition
metal elements to be dealt with in an economical way.

Car and Parrinello have combined the density
functional theory with molecular-dynamics techniques. 11

Here both the electronic structure problem and the dy
namics of the atoms are solved simultaneously by a set of
Newton's equations. In this way not only has the struc
ture determination become a straightforward technique,
but the fully dynamic time evolution of the atomic struc
ture has also become accessible.

The Car-Parrinello method was first applied in the con
text of the plane-wave pseudopotential method. There
is considerable interest in applying the same technique
to all-electron (AE) methods, which allow one to deal
efficiently with first-row and transition-metal elements
and which supply information about the wave func
tion close to the nucleus probed by several experimen
tal techniques, but not provided by the pseudopoten
tial approach. These are, among many others, hyper
fine parameters'P and electric field gradients.13 ,14 Sev
eral features of the Car-Parrinello method have been im
plemented into existing AE methods such as the com
bined minimization of electronic and nuclear degrees of
freedom. 1S- 19 To my knowledge, however, no energy
conserving molecular-dynamics simulation has been per
formed to date that can compare in terms of quality with
simulations using the pseudopotential approach.

This article describes an approach that combines the
versatility of the LAPW method with the formal sim
plicity of the traditional plane-wave pseudopotential ap
proach. The method extends the augmented-wave meth
ods, such as the LAPW method, and the pseudopoten
tial method in a natural way. As an AE method it pro
vides the full wave functions that are not directly acces
sible with the pseudopotential approach, and the poten
tial is determined properly from the full charge densi-
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ties. It will be demonstrated that the accuracy of the
method described here compares well with the most ac
curate existing electronic structure methods based on
the local-density approximation. The quality of first
principles molecular dynamics obtained with the present
AE approach is in line with that of state-of-the-art Car
Parrinello calculations. Hence the first energy-conserving
molecular-dynamics calculations based on the full wave
functions were made possible. Finally, it can be imple
mented with relatively minor effort into existing pseu
dopotential codes.

The method has many similarities with both the ex
isting linear methods and the pseudopotential approach.
We can therefore expect that this method will close the
gap between the two. The LAPW method is a special
case of the present method, and the pseudopotential for
malism is obtained by a well-defined approximation.

This article is organized as follows. Section II estab
lishes the principles of the method. Section III describes
which approximations are required in real calculations.
Section IV derives the expressions for the Hamilton op
erator and forces. Section V describes the implemen
tation in a first-principles molecular-dynamics scheme.
Section VI describes the basic ingredients used in the
method, such as partial waves and projector functions.
Section VII contains a detailed analysis of the errors in
troduced in Section III. Section VIII is devoted to nu
merical test calculations. Section IX shows the relation
between the new method and existing approaches.

cillations, which make a numerical treatment cumber
some. Therefore, we transform the wave functions of this
Hilbert space into a new, so-called pseudo (PS) Hilbert
space. Mapping the physical valence wave functions onto
the fictitious PS wave functions thus defined shall be a
linear transformation and it shall transform the physi
cally relevant AE wave functions onto computationally
convenient PS wave functions. The PS wave functions
will be identified with the envelope functions of the lin
ear methods or the wave functions of the pseudopoten
tial approach. An AE wave function is a full one-electron
Kohn-Sham wave function and is not to be confused with
a many-electron wave function. 'All quantities related to
the PS representation of the wave functions will hence
forth be indicated by a tilde.

This transformation changes the representation of the
wave functions in a way reminiscent of the change from a
Schrodinger to a Heisenberg picture. Knowing the trans
formation T from the PS wave function to the AE wave
functions, we can obtain physical quantities, represented
as the expectation value (A) of some operator A, frorn
the PS wave functions I~) either directly as ('1JIAlw) af
ter transformation to the true AE wave functions I'll) ==
Tl~) or as the expectation value (A) == (q,IAIq,) of a PS
operator A == Tt AT in the Hilbert space of the PS wave
functions. Similarly we can evaluate the total energy
directly as a functional of the PS wave functions. The
ground-state PS wave functions can be obtained from

II. FORMALISM

(1)

A. Projector augmented-wave functions

Wave functions of real materials have very different
signatures in different regions of space: in the bonding
region the wave function is fairly smooth, whereas close
to the nucleus the wave function oscillates rapidly owing
to the large attractive potential of the nucleus. This is the
source of the difficulty of electronic structure methods to
describe the bonding region to a high degree of accuracy
while accounting for the large variations in the atom cen
ter. The strategy of the augmented-wave methods has
been to divide the wave function into parts, namely, a
partial-wave expansion within an atom-centered sphere
and envelope functions outside the spheres. The enve
lope function is expanded into plane waves or some other
convenient basis set. Envelope function and partial-wave
expansions are then matched with value and derivative
at the sphere radius.

Even though the present method has been inspired by
the existing augmented-wave methods, I approach the
problem in a somewhat different way. The relation of
my approach to the commonly used one described above
will be described in Sec. IX B. Concerning the following
derivation it is emphasized that the present method is, in
a certain sense, the most general augmentation scheme.

Let us consider the Hilbert space of all wave functions
orthogonal to the core states. The physically relevant
wave functions in this Hilbert space exhibit strong os-

Next, we choose a particular transformation. Since we
will exploit the characteristics of particular atom types,
we consider only transformations that differ from identity
by a sum of local, atom-centered contributions TR such
that

(2)

Each local contribution TR acts only within some aug
mentation region OR enclosing the atom. This implies
that AE and PS wave functions coincide outside the aug
mentation regions. The equivalent of the augmentation
region in the linear methods is the muffin-tin or atomic
sphere. In the pseudopotential method the augmentation
region corresponds to the so-called core region.

The local terms TR are defined for each augmenta
tion region individually by specifying the target func
tions I¢i) of the transformation T for set of initial func-
tions I¢i) that is orthogonal to the core states and other
wise complete in the augmentation region,20 namely, by
I¢i) == (1 + TR)I¢i) within OR. I call the initial states
I¢i) PS partial waves and the corresponding target func
tions I¢i) AE partial waves. A natural choice for these
functions for the AE partial waves are solutions of the
radial Schrodinger equation for the isolated atom, which
are orthogonalized to the core states if necessary. Hence
the index i refers to the atomic site R, the angular mo
mentum quantum numbers L == (l, m), and an additional
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(9)

(10)

In contrast to the valence states, no projector functions
need be defined for the core states, and the "coefficients"
of the one-center terms are always unity. Furthermore,
consistent with the frozen-core approximation, the core
states are imported from an isolated atom. In prac
tice, a soft core scheme with core states that adjust
to the instantaneous potential is also conceivable (see
Sec. VIID 2), but has not been implemented. In the fol
lowing, the core states are implicitly included when sum
ming over energy states. Note that the corresponding
coefficients are not defined via the scalar product with a
PS wave function, even though, for the sake of simplicity,
I will still use the symbol for all states.

It should be noted that the frozen-core approximation
allows certain nontrivial changes of the core wave func
tion during the self-consistency or molecular-dynamics
simulation. The frozen-core approximation only restricts
the variational degree of freedom to a simple unitary
transformation among the core states (and occupied va-

The three quantities that determine this transformation
are (i) the AE partial waves l<Pi) obtained by radially
integrating the Schrodinger equation of the atomic en
ergy for a set of energies €; and orthogonalization to the
core states; (ii) one PS partial wave I¢i), which coincides
with the corresponding AE partial wave outside some
augmentation region for each AE partial wave; and (iii)
one projector function IPi} for each PS partial wave lo
calized within the augmentation region and which obeys
the relation (Pil¢i) == 8ii ·

The partial waves are functions on a radial grid, mul
tiplied with spherical harmonics. In our case the PS
wave functions are expanded into plane waves, but other
choices are equally possible. The projectors are also cal
culated as a radial function times spherical harmonics,
but are then transformed into the same representation
as the PS wave functions, which, in our case, is a plane
wave representation. Since the projectors are tied to the
atomic positions and since their shape is independent of
the potential, their Fourier components are expressed as
a product of a form factor and a structure factor.

The core states IWC
) are decomposed in a way simi

lar to the valence wave functions. They are decomposed
into three contributions: a PS core wave function I~C),
which is identical to the true core state outside the aug
mentation region and a smooth continuation inside; an
"AE core partial wave" I4>C), which is identical to the AE
core state IwC

) and is expressed as a radial function times
spherical harmonics; and finally a "PS core partial wave"
I<pC

) , which is identical to the PS core state IwC
) , but rep

resented as a radial function times spherical harmonics.
The core state is therefore expressed as

between the valence wave functions and fictitious PS
wave functions has been established. Using this trans
formation, the AE wave function can be obtained from
the PS wave function by

(8)

(5)

(3)

(7)

Since l<Pi) == TI¢i), the corresponding AE wave function
is of the form

with identical coefficients Ci in both expansions. Hence
we can express the AE wave function as

where the expansion coefficients for the partial wave ex
pansions remain to be determined.

Since we require the transformation T to be linear,
the coefficients must be linear functionals of the PS wave
functions. Hence the coefficients are scalar products

index n to label different partial waves for the same site
and angular momentum. For each such AE partial wave
let us choose a PS partial wave denoted by I¢i). The PS
partial waves must be identical to the corresponding AE
partial waves outside the augmentation region and should
themselves form a complete set of functions within the
augmentation region. The remaining degree of freedom
in the choice of the PS partial waves will be exploited
to map the physically relevant AE wave functions onto
computationally convenient PS wave functions. In our
case these are smooth functions.

This formal definition must be turned into a closed
expression for the transformation operator. We make use
of the fact that, within the augmentation region, every
PS wave function can be expanded into PS partial waves:

The projector functions are localized in the augmentation
region, even though more extended projector functions
could in principle also be chosen. The most general form

for the projector functions is (piI = E i ({ (fk I¢,)})ij1 (fi I,
where the Ifi) form an arbitrary, linearly independent set
of functions. The projector functions are localized if the
functions Ifi) are localized. The reader interested at this
point in a practical procedure to determine partial waves
and projector functions might wish to jump to Sec. VI.

In summary, a linear transformation

Ci == (Pil~) (6)

of the PS wave function with some fixed functions (pi I,
which I will call projector functions. There is exactly one
projector function for each PS partial wave.

The projector functions must fulfill the condition
:Ei l¢i}(Pil == 1 within OR, so that the one-center ex-
pansion :Ei I¢i)(pl~) of a PS wave function is identical
to the PS wave function I~) itself. This implies that
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The general form of an operator is strongly reminiscent
of generalized separable pseudopotentials.F' The PS op
erator contains three parts: The first part is an operator
that directly acts on the PS wave function and is evalu
ated either in real or reciprocal space. The remaining two
parts contain the projectors and the expectation value of
the operator either between the AE or the PS partial
waves, which can be easily obtained on radial grids using
spherical harmonics and Clebsch-Gordan coefficients. If
the partial waves are unbound, the individual terms A 1

and Al are not defined. However, since the PS and AE
partial waves are identical outside the augmentation re
gion, these tails cancel exactly for each pair of partial
waves. In practice, this problem is solved by truncat
ing the AE and PS partial waves somewhere outside the
augmentation region in a completely identical way.

There is an additional freedom to add a terrn of the
form

to the right-hand side of Eq. (11), where B is an ar
bitrary operator that is localized within the augmen
tation regions. It is easily shown that the expectation
value of this term is zero for any PS wave function,
since I~) == 'Ei l¢i)(Pil~) within the augmentation re
gion. This freedom can be exploited when the operator A
cannot easily be evaluated in a plane-wave expansion. An
example is the Coulomb potential of the nucleus, which
is problematic due to its singularity at the nuclear site.
In this case we may construct a new potential that is
identical to the true potential outside the augmentation
region and a smooth continuation inside. The difference
between the two potentials is localized within the aug
mentation region and therefore can act as the operator
B in Eq. (13). By adding a term of the kind of Eq. (13)
to the PS electrostatic potential obtained from Eq. (IlL
we can cancel the Coulomb singularity in the plane-wave
part and obtain an expression that is less sensitive to a
truncation of number of plane waves.

We now obtain the charge density following the de
scription given in Eq. (11). The charge density at a
point r in space is the expectation value of the real-space
projection operator Ir)(rl. Hence the charge density is
given by

where

lence states). It does allow mixing among the core states
due to changing potential. Therefore, to test the accu
racy of the frozen-core approximation one should never
compare the core states of the isolated atom on a one-to
one basis with those obtained from a relaxed-core calcu
lation in a crystal or molecule.

At this point I will not discuss the components of the
projector augmented-wave (PAW) method further. They
are described in Sec. VI of this article. I will, however,
continue to impose the condition that the AE and PS
partial waves form complete sets of functions within the
augmentation regions. In practical calculations the num
ber of partial waves and projectors needs to be truncated.
The way to truncate the series and the errors involved are
also described in detail in later sections of the paper.

Here and in the following I will make extensive use of
Dirac's bra and ket notation. A wave function in real
space is written as (rlw) == W(r); its complex conjugate
function is (wlr) == W*(r). The Fourier components of
the wave function are (GI'1J) == w(G) with a similar def
inition of its complex conjugate. A plane wave is of the
form (riG) == exp (iGr). I have adopted the convention
for the Fourier transform that the forward transform of
a function I is (rll) == 2:G(rIG)(GII) and the backward
transform is of the form (Gil) == I/V Iv dr(Glr)(rll),
where V is the volume of the unit cell.

B. Operators

Since in the PAW method the PS wave functions in
stead of the AE functions play the role of the variational
parameters, we need to be able to obtain observable
quantities as the expectation values of the PS wave func
tions. As the representation of the wave functions has
been changed, we also need to transform our operators
into new, so-called PS operators.

Consider some operator A: Its expectation value (A) ==
2:n In ('lin IAlwn), where n is the band index and In is the
occupation of the state, can be obtained alternatively as
(A) == Ln In(~nIAI~n)' For quasilocal operators, such
as the kinetic-energy operator - \72 /2 and the real-space
projection operator Ir) (rl, which are needed to evaluate
total energy and charge density, the PS operator has the
form

A == TtAT

== A + 'E IPi)(<PiIAI<pj) - (¢iIAI¢j))(pjl . (11)
i,j

To arrive at Eq. (11) I expanded Tusing Eq. (8) and
deleted terms that cancel because 2:i l¢i)(Pil == 1 within
the augmentation region f!R and I¢i) == l<Pi) outside the
augmentation region. Note that only on-site terms con
tribute.

For truly nonlocal operators we need to add a term
~A to the expression Eq. (11) given as

6A =~ IPi)((¢il- (.j;iI)A(1 - ~ l.j;j)(Pjl)

+(I-lpj)(¢jI)A(I<pi) -1¢i))(Pil . (12)

and

B - 'E IPi)(¢iIBI¢j)(pjl
i,j

n 1 (r ) == L fn(~nIPi)(¢ilr)(rl¢j)(Pjlq,n),
n,(i,j)

n1 (r ) == 2: In(~nIPi)(¢ilr)(rl¢j)(Pjl~n).
n,(i,j)

(13)

(14)

(15 )

(16)
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with the normalization constant CI. determined such that
its multipole moment f dr rI.YL(r)9L(r) is unity. YL is a
spherical harmonic function or its real counterpart. The
decay length r c is sufficiently small so that the compensa
tion charge density is localized within the augmentation
regions. The value of r c depends on the particular atom
type; R stands for a particular nuclear site and L = (l, m)
represents the angular momenta in the spherical harmon
ics expansion. The multipole moments Q RL are given by

In addition, let us introduce the so-called compensa
tion charge density ii: After adding an appropriate com
pensation charge density to the PS charge density and
its one-center expansion, the difference of the AE and
the PS one-center contributions (n 1 + n Z ) - (iiI + it)
to the charge density has vanishing electrostatic multi
pole moments and hence no longer interacts with charges
outside the augmentation region: This energy has been
transferred to E. Here I made use of the fact that a
localized charge distribution produces a potential that,
outside the region of localization, depends only on the
electrostatic multipole moments, but not on the shape of
the charge distribution.

The identity E = E + E 1 - E1 for a complete set of
partial waves can be seen as follows. (Those not inter
ested to follow through this detail may proceed to the
next paragraph.) One divides space into augmentation
regions and an interstitial region. Now we use the identi
ties n = n l and ii 1 = ii inside the augmentation regions
and the identities n = ii and n l = ii 1 in the interstitial
region. One can convince oneself easily that the decom
position is true for the kinetic energy (see Sec. lIB), for
the exchange and correlation energy, and for the term
proportional to v. The decomposition for the electro
static energy is more complex to show: Let us add a
charge density n 1 + n Z - iiI - it to ii + it in Eq. (19)
and to iiI + n in Eq. (21). The effect of this addition
vanishes: First, the term quadratic in n 1 + n Z

- ii1
- n

cancels exactly because E and EI are added with oppo
site sign. Second, the terms linear in n 1 + n Z - ii1

- it
are proportional to ii - ii1 , which is zero within the aug
mentation regions, and to the electrostatic potential of
n 1 + n Z - iiI - it, which is zero in the interstitial re
gion, because the density itself is localized within the
augmentation region and has zero electrostatic multipole
moments. Once this term has been added, the electro
static contributions of the last two terms Eqs. (20) and
(21) are identical and cancel, while the first term is the
true electrostatic interaction of the full charge density
n + n Z = ii + n 1 - ii1 + n Z . This special form of the
total energy has been chosen in order to obtain a strict
separation into partial-wave and plane-wave expansions
and to achieve rapid convergence for both expansions.

The compensation charge density n = L:R nR with

(22)itR(r) = LgRL(r)QRL
L

is expressed as a sum of generalized Gaussians

n

n

+ ~ / d /d ,(ii+ it)(ii + it) -l: --
2 r r Ir _ r'l rnv

+ / driifxc(ii) , (19)

E I = L fn(q,nIPi)(<Pil-~V21<pj)(Pjlq,n)
n,(i,j)

1/ / ,(n
1+nZ)(nl+nZ)

+- dr dr I I2 r - r'

+ / drnlfxc(nl) , (20)

E1 = L fn(q,nIPi)(¢il-~V21¢j)(Pjlq,n)
n,(i,j)

+~ / d /d ,(iiI + it) (iiI + it) +/d -1-
2 r r Ir _ r'l rn v

+ / driilfxc(iil) . (21)

c. Total energy

The potential v is an arbitrary potential localized in
the augmentation regions. Its contribution to the total
energy vanishes exactly because ii = iiI within the aug
mentation region. Since the potential v contributes only
if the partial wave expansion is not complete, it is used
to minimize truncation errors.

l/ d /d ,(n+nZ)(n+n
Z)

/d ()+ 2" r r Ir _ r'l + rn€xc n

(18)

can also be divided as E = E + E 1 - E1 , into a smooth
part E, which is evaluated on regular grids in Fourier or
real space, and two one-center contributions E 1 and E1

,

which are evaluated on radial grids in an angular mo
mentum representation. Let us denote the point charge
density of the nucleus by n Z and the energy per electron
from exchange and correlation as i x c • Here and in the
following I use hartree atomic units (Ii = e = me = 1).
The three contributions to E are

Similar to the expectation values, the expression for
the total energy functional

Note also that n l contains the contribution of the core
states En(<P~lr)(rl<p~) and that iiI as well as ii contain

the contribution of the PS core states En (~~ Ir) (rl~~)
and L:n (q,~lr)(rlq,~), respectively.

In practice, we do not construct a PS core state for
each core state individually unless we are interested in
the physics related directly to the core states. Instead,
we construct only a PS core density.
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QRL = Jdrlr - Rll[nk(r) + n~(r) - iik(r)]Y.i(r - R) .

(24)

Since the Gaussians are required to decay within the
augmentation regions, they often have high Fourier com
ponents. This would require a large plane-wave cutoff
in the PS charge density. The problem is solved by
a well-known trick already used in the pseudopotential
approachr''' We introduce a second, primed compensa
tion charge density it', which has the same multipole mo
rnents as it, but uses generalized Gaussians gkL(r) with
a larger decay constant r~ than the unprimed compensa
tion charge density. It may extend over several atomic
sites, but should not contribute higher Fourier compo
nents than the PS charge density itself does.

Now we rewrite the electrostatic energy in E:

-~ Jdr Jdr' (n + it) (n + it)
2 [r - r'l

Finally, we need to evaluate the energy of exchange and
correlation for a one-center expansion. We adopt a proce
dure from previous full-potential LMTO calculations26,27

and expand the corresponding energy density in the de
viation of the one-center charge density from its spherical
part nk,t=:o:

where JLxc(n) == d[nExc(n)]/dn. The angular momentum
components of the one-center charge density are denoted
by nkL' In practice a Taylor expansion up to the second
order 'has shown to be sufficiently accuratc.F'' The one
center contribution of the PS charge density is treated
identically.

== ~JdrJdr' (n+n')(n+n')
2 Ir - r'l

+Jdr n(r)v(r) + L UR,R"

R,R'

(25)
III. FROM AN EXACT FORMALISM

TO A PRACTICAL SCHEME

The first term in the new expression (25) involves only
smooth functions and can be evaluated in Fourier space
as

u ,== ~ Jdr Jdr' nR(r)itR' (r') - fiR (r)fiR, (r')
R,R 2 Ir-r'l'

(28)

which can be evaluated analytically.23-25 The range of
this pair potential is twice that of the smooth compen
sation charge densities it'. It depends explicitly on the
charge distributions via the multipole moments QRL'

Note that the potential v and the pair potential UR,R'

contain nonspherical terms and adjust to the actual
charge density.

Up to this point the PAW method is an exact im
plementation of the density-functional theory within the
frozen-core approximation. However, we have required
certain completeness conditions for the plane-wave basis
set for the PS wave functions and the AE and PS partial
waves. In order to arrive at a practical scheme, let me
now introduce two approximations.

(i) Plane waves are included only up to a given plane
wave cutoff Epw defined as the maximum of G 2 /2.

(ii) The number of AE partial waves, PS partial waves,
and projectors is finite. However, the truncation of i\E
and PS partial waves and projector functions are done in
exactly the same way. That is, for each AE partial wave
there is a corresponding PS partial wave and its projector
function.

Both approximations can be controlled in a straight
forward way, by increasing either the plane-wave cutoff
and/or the number of partial waves. The convergence for
both is rapid if a suitable set of partial waves and pro
jectors has been selected. Typically good convergence
is obtained for plane-wave cutoffs of 30 Ry and one or
two partial waves per site and angular momentum, with
a maximum angular momentum of typically f == 1 or
f == 2. The partial-wave truncation will be discussed in
detail in Sec. VII.

The two approximations define a new total energy
functional, and we have to establish that this new func
tional is sufficiently close to the correct functional for
the physically relevant states. Once this new functional
is defined, no further approximations are allowed be
cause they would destroy the energy conservation in a
molecular-dynamics simulation. Energy conservation is
the most important test of the quality of any molecular
dynamics simulation. Many previous electronic struc
ture methods have concentrated on providing a satisfac-

(26)

(27)A( ) == Jd ,n(r') - n'(r')
v r r Ir - r'l '

The second part of Eq, (25) introduces a potential

which has high Fourier components just as the original
compensation charge density does. However, they do not
contribute to the total energy because they are multi
plied with the high Fourier components of the PS charge
density, which are exactly zero if a plane-wave cutoff is
imposed. Hence this term can also be exactly evaluated
in Fourier space. The spacial extent of this potential in
real space is identical to that of the smooth compensation
charge density ft'n.

The last term in Eq. (25) is a short-ranged pair po
tential between the atoms
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p = 2:n IWn)/n(\Ilnl, where In denotes the occupations
and I\IIn) the orthogonal eigenfunctions of the density
operator. This can be explained as follows: Since the ex
pectation value of anyone-particle operator A is the trace
(A) = Tr[pA] of the product between the one-particle op
erator and the density operator, the first derivative of the
total energy with respect to the density operator can be
written as

where the potential is v(r) = Ir) 8~~) (rl, which is the
well-known form of the Hamilton operator.

As the variational parameters of the PAW method are
the PS wave functions, we construct a PS Hamilton op
erator if defined as the derivative of the total energy,
given by Eqs. (19)-(21), with respect to the PS density
operator p = L:i lq,n)/n(q,nl with wave functions that
obey the orthogonality condition (q,nIOIq,m) = 8n m . In
this section we shall derive the explicit expressions for
the PS Hamilton operator that will be needed to set up
the Kohn-Sham equations or the equations of motion for
first-principles molecular dynamics.

Let us treat the potential energy as a functional of four
arguments ii, n l

, ii l , and the multipole moments QRL.
The multipole moments, which determine the compen
sation charge densities, are themselves unique functions
of the one-center densities. This choice-which is not an
approximation-will simplify the bookkeeping in the fol
lowing derivation. The derivative with respect to the PS
density operator is then obtained as

tory description of the potential. For molecular-dynamics
simulations the primary quantity is the total energy func
tional because small inconsistencies between forces and
total energy can create substantial difficulties in a simula
tion. An accurate description of the potential follows, of
course, from an accurate description of the total energy
functional.

There are two further approximations that are not nec
essary, but are employed to accelerate the calculations:
One can introduce a plane-wave cutoff in the representa
tion of the PS charge density and an angular momentum
truncation in the one-center PS and AE densities. With
out these cutoffs, the PS charge density has plane-wave
components corresponding to four times the plane-wave
cutoff for the wave function and the one-center expan
sions have angular momentum components of up to twice
the maximum angular momentum of the partial waves.
However, a number of these terms contribute little to the
total energy, so that these approximations are convenient
ways to save computation time. One can truncate the
angular momentum expansion safely at I = 2, and the
plane-wave cutoff for the density can be chosen in many
cases to be only twice the value of the wave function.

IV. FORCES, HAMILTON OPERATORS, AND
OVERLAP MATRICES

In order to find the ground state of the density func
tional or to propagate wave functions and atoms in a
molecular-dynamics simulation, one needs to calculate
the gradients of the total energy functional with respect
to all the variational parameters, namely, the PS wave
functions and the atomic positions. In the following
subsections I shall derive explicit expressions for forces,
Hamilton operators, and overlap matrices.

A. Overlap operator

The overlap matrix in the AE representation is given
simply by the matrix elements of the unity operator.
Consequently plane waves form an orthogonal basis set
in the AE representation. The PS version of the unity
operator obtained via Eq. (11), however, is a nonlocal
operator of the form

8E = 8Tr[-tV 2p] + Jdr 8E 8Tr[lr) (rip]
Bp 8p 8n(r) Bp

1 2
=--V" +v,

2

8E = 8Tr[pT] Jdr 8E 8ii
8p 8p + 8ii 8p

J (8E 8E 8QR L ) 8nI

+ dr 8n l +~ 8QRL 8n l 8p
,

J (8E 8E 8QR L ) 8iiI

+ dr 8ii l +~ 8QRL 8ii l 8p'

where

(31)

(32)

o = 1 +L IPi) [(cPi IcPj) - (~il~j)](pjl . (30)
i,j

Hence, in the PS representation, plane waves are no
longer orthogonal, that is, (GIOIG') i= 8G ,G " if the PS
overlap operator 0 differs from unity. This is a direct
consequence of relaxing the condition of norm conser
vation: The PS overlap operator obviously reduces to
the unity operator if the norm-conservation condition
(4)i l4>j) = (cPi IcPj) is imposed.

B. Hamilton operator

The Hamilton operator is the first derivative of the to
tal energy functional with respect to the density operator

is the PS version of the kinetic-energy operator T =
- V 2 /2. Note that the three densities ii, n l , and ii l

are linear functions of the PS density operator and their
derivatives with respect to the PS density operator are
obtained easily from Eqs. (15)-(17).

The individual terms in Eq. (32) are evaluated as fol
lows.

(i) The derivative with respect to the PS charge density
is obtained from Eqs. (19) and (25) as
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v(r) == 8E == J dr,n(r') + n'(r')
8n(r) Ir - r'l

+v(r) + v(r) + JLxc [n (r )] .

(v) The expressions (33), (34), (38), and (39) can now
be combined using Eq. (32) to form the PS Hamiltonian

(34)

(ii) Since the multipole moments enter the total energy
expression only via the compensation charge densities it
and n', the corresponding derivative of the total energy
is

~ == Jdr 8E 8n(r) +Jdr~ 8n'(r) 35
8QRL 8n(r) 8QRL 8n'(r) 8QRL . ( ) The full potential

is, like the full charge density, a superposition of a smooth
plane-wave part and two one-center expansions per site.
The smooth part is a plane-wave sum and the one-center
expansions are radial functions times spherical harmon
ics. The gradient of the total energy functional with re
spect to the PS wave functions is then obtained as

In order to obtain energies and forces in a fully
consistent manner-a requirement for exact energy
conservation-we must not evaluate the derivative of a
term in one representation if the total energy is eval
uated in another. Therefore we divide this expression
further, by following exactly the way the corresponding
total energy terms are evaluated. These representations
are the Fourier mesh denoted by M and the radial grid
RG. A stands for analytical evaluation as used for the
pair potential defined by Eq. (28). We divide the energy
derivative with respect to the multipole moments further
into

8E[~,R] I == iIl~ )/ .
8(Wn l R n n

(41)

(42)

~ == { dr ( dr ,9RL(r)n(r') + 9kL{r)n'(r')
8QRL 1M 1M Ir - r/l

+ j dr j dr,9RL(r)n(r') - 9kL{r)n'(r
/)

A A Ir-r/l

_ f dr f dr,gRL(r)[ii
1(r'), + n(r')] "

iRG iRG Ir - r I (36)

using Eqs. (19), (21), (25), (27), and (28).
(iii) Using Eq. (24) we can resolve 8QRLI8n1(r) and

8QRLI8n1(r). We define the potential

v~(r) = L~ 8QRL = - L~ 8QRL
L 8QRL 8n1(r) L 8QRL 8n1(r)

= L(r - R)iYi(lr - RI) 8Q8E . (37)
L RL

(iv) With the help of Eqs. (20), (21), and (37), we
evaluate the potentials

v1(r) =~ + '"~ 8QRL
8n1(r) ~ 8QRL 8n1(r)

1d ' n1(r ') + n ~ (r') [ 1 ( )] 0 ( )== r I 'I + J.Lxc n R r + v R rR r-r
(38)

The potential v1(r) is the one-center expansion of the
AE potential and vl(r) is the one-center expansion of
the PS potential v(r) at site R.

c. Forces

1. Force theorems

Several force theorems have been discussed in the liter
ature. Most of them exploit the variational principle for
the electronic wave functions, which says that the total
energy is insensitive to the first order to a change in the
charge density. In other words, the forces acting on the
electrons vanish in the electronic ground state. In the
Hellmann-Feynman theorem28

-
3o the force on the atoms

follows from an infinitesimal distortion of the atomic po
sitions alone, while changes of the electronic wave func
tions do not contribute if the latter are determined vari
ationally. In the so-called "force theorem,,,31-34 not only
the nucleus, but also the electronic charge density within
some arbitrary volume enclosing the nucleus is rigidly
displaced. Both force theorems produce the same result
in the electronic ground state, where no net forces act
on the electrons. Otherwise, their results differ, if the
Kohn-Sham equations have not been obtained in a fully
self-consistent manner.

However, if we use a Lagrangian formalism to calculate
the trajectories, with the electronic wave functions and
the atomic positions as independent parameters, there
is only one choice for calculating the forces. The force
must be identical to the partial derivative of the to
tal energy with respect to the atomic positions while
keeping the variational parameters of the wave functions
fixed, F R == -~~II~). Note that the variational param
eters refer to the Hilbert space spanned by the occupied
one-particle states. If an infinitesimal displacement of
the atoms affects the orthonormality of the one-particle
states, the latter must be rescaled as described below.
This expression for the forces is uniquely defined even
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(48)

arbitrarily far from the electronic ground state. The rea
son for using this expression is not that this force theorem
is particularly insensitive to deviations from the Born
Oppenheimer surface, but rather that only the direct par
tial derivative avoids the double counting of forces acting
on the wave functions and those acting on the atoms.

To calculate the derivative with respect to the atomic
positions, one first has to calculate the forces on the
nucleus and second to include the change of the AE
wave functions for fixed PS wave functions, but changing
atomic positions. This term appears because the aug
mentation depends on the atomic position. The force
on the nucleus is obtained as FJfF = - ~~ 11'1')' It is
the product of the electric field at the nucleus and the
nuclear charge. Its value is derived from an infinitesimal
displacement of the nuclear charge density n Z . The forces
resulting from an infinitesimal change in the wave func
tions due to the atomic displacement can be written as
FC = - ~~ II~) + ~~ 11'1') and are called Pulay forces. 3 5 To
use the language of the force theorem, the Pulay forces
describe forces on the electrons that are dragged along
with the nucleus due to the position-dependent basis set.
With the PAW method we must consider Pulay forces
from the frozen-core electrons.P'' which shift rigidly with
the nucleus, and the contributions from the augmenta
tion.

When calculating the Pulay forces, we must also con
sider the change in the overlap between the wave func
tions. An infinitesimal change of the atomic positions
must be accompanied by a change in the wave func
tions that restores the orthogonality. The new occu
pied wave functions must span the same portion of the
Hilbert space that was occupied before displacement of
the atoms. Hence the new wave function can be expressed
as a linear combination

Tn

of the PS wave functions with undistorted atomic po
sitions. Note that these wave functions should not be
confused with the self-consistent wave functions for dis
placed atomic positions. The new wave functions obey
the orthogonality condition

to linear order in the displacement, which determines
AnTn by

(45)

Here V R corresponds to a derivative of a nuclear coor
dinate rather than to a derivative with respect to an
electronic coordinate, which is denoted by V. To ar
rive at this expression we used the orthonormality of the
wave function l~n(R)) before the displacement. We re
tain the freedom of adding an arbitrary antisymmetric
matrix to A, which is reminiscent of the invariance of the
total energy with respect to a unitary transformation of
the occupied wave functions. This can be seen as fol
lows: A unitary matrix has the general form eB , where
B is an anti-Hermitean matrix [i.e., B = -Bt). Hence

a unitary matrix can be written in the first order in B
as 1 + B. Since the total energy is invariant with re
spect to a unitary transformation between the occupied
wave functions, the forces are invariant with respect to
the antisymmetric part of A, given that A is block diag
onal separating occupied and unoccupied states. Hence
we obtain

VRI~n) = -~ L I~Tn}[(~TnIVR61~n) + B Tnn] . (46)
Tn

Using Eqs. (46) and (47) and

aE1~R] 1_ = Lfn(~nIVRHI~n), (47)
l'1'n) n

we can write the total force including the force on the
nucleus and the Pulay force as

- Lfn(q,nIVRHI~n)
n

'""' f + f - - - - --+ L.-J n 2 Tn (wrnlVROlwn)(wnIHlwrn)
n,Tn

'""' f - f - --+ L.-J n 2 Tn BTnn(wnIHlwrn) .
n,rn

The last term in Eq. (48) describes the effect of elec
tronic excitations resulting from a unitary transformation
between occupied and unoccupied states and cannot be
specified further. However, its contribution to the force
vanishes if the Hamilton matrix (q,n!HIq,Tn) commutes
with the occupations (for example, if it is diagonal). This
is the case if the wave functions are obtained by diagonal
ization of a Hamiltonian. In a Lagrangian formalism this
term must be chosen in a well-defined way, as described
in a later section.

2. Forces in the PAW method

The change of the AE wave functions is related to a
displacement of the projector functions and the partial
waves

VRlwn) = - L(IV¢i) - IV¢i) )(Pil~n)

- L(I¢i) -1¢i))(VPilq,n)
i

-~L I\[ITn)(~TnIVR61~n). (49)
Tn

The first summation corresponds to a rigid displacement
of the partial waves, the second to change of shape of the
one-center expansions, and the third is the force due to
the change of the overlap. For simplicity, we derive the
forces that result from the three contributions indepen
dently.

The force resulting from a rigid shift of the partial
waves is treated together with those functions that do not
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explicitly depend on the PS wave functions but are tied
directly to the nuclear positions, such as the rigid shift
of the nucleus n~, the potential VR, and the Gaussians
gRL and gkL used to expand the compensation charge
densities nR and n~ .

Let us first analyze the contribution of the smooth part
E, given in Eq. (19), of the total energy

(55)

(56)

This force can be evaluated using the one-center expan
sions v I ( r) and VI (r) of the AE and the P S potential

p~2) = _ L V'R8i j (4>i l - ~V'2 + vll4>j)
i,j

(50) (57)

The first three terms are evaluated in G space. The
fourth is related to the derivative of the pair potential
for fixed multipole moments Q RL and is evaluated ana
lytically. Note that the multipole moments do not change
under an infinitesimal rigid shift of the partial waves be
cause the center of the Gaussians is also shifted analo
gously.

Second, let us consider the contribution of the rigid
shift from the one-center terms E I and EI . Their contri
bution is exactly zero, because all contributing densities
and potentials are rigidly shifted, so that the change can
be reduced to a change of coordinates, which does not
affect the energy. Note that this term also contains the
force on the nucleus.

Next we consider the change of shape of the one-center
densities. Here we can use quantities that have already
been calculated in the Hamiltonian. This force is propor
tional to the gradient

Finally, we consider the forces resulting from the
change of the orthogonality of the AE wave functions.
The corresponding force is of the form

p(3) = L In ~ 1m (~nIHI~m)(~mlV' R61~n)
n,rn

= - L In ~ 1m (~nIHI~m)
i,jjn,rn

x 2Re( (q,n IVPi) (Pj Iq,rn)) (<Pi I¢j) - (¢i I¢j)) .
(58)

The total force is given by the sum of the three terms

(59)

v. FIRST-PRINCIPLES
MOLECULAR DYNAMICS

n

(51 ) A. Fictitious Lagrangian

n

of 8 i j , which is defined as

(60)

c = L m'l'ln(q,nlq,n) + L ~MRR2 - E[I~n), R]
n R

The first-principles molecular dynamics is imple
mented in a straightforward manner once the exact ex
pressions for the Hamiltonian and the forces have been
obtained. After inclusion of the real kinetic energy of the
nuclei and the fictitious kinetic energy of the PS wave
functions, we obtain a Lagrangian

(52)

(53)

where 8 i j is a density matrix for the one-center expan
sions in terms of partial waves.

The force due to the change of shape has the form

n,Tn

where the last term ensures orthogonality of the AE wave
functions via the method of Lagrange parameters. The
resulting Euler-Lagrange equations have the form

The energy derivative with respect to E>ij is obtained
similarly to the corresponding term in the Hamiltonian
[cf. Eq. (32)]

oE _ Jdr( oE + '"'~ OQRL) on
i

08·· - on i L..J OQRL onI 08· .
~ R,L ~J

m'l'l~n) = -HI~n) + L 61~m)AmnL
rn

(61)

+Jdr( oE + '"'~8Q RL ) anI (54)on i f:t OQRL on i OE>ij'

and

(62)

where and are integrated with the Verlet algorithm.P" The La-
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grange parameters for a system at rest are related to the
Hamiltonian via Anm = (q,nIHIq,m)(!n + !m)j2. Note
that for a system at rest the Hamiltonian commutes with
the occupations.

B. Propagation of the wave functions

The equations of motion for the electrons are inte
grated using the Verlet algorithnr'"

time step. It differs from 0(0) only if the atoms are mov
ing. The trajectories determined with this procedure are
exactly symmetric under time reversal, which is crucial
to obtaining energy conservation and predicts the wave
functions accurately to the order Ll3

, consistent with the
overall accuracy of the Verlet algorithm. Furthermore,
the constraints cannot deteriorate if a finite time step is
used.

In practice we first evaluate the forces of constraints
as

Iq,n(+)) = 21q,n(O)) - Iq,n(-)) - HIq,(O))

+~ 01q,tn(O)}AtnnL. (63)

(67)

Using Eq. (65) I rewrite the constraint equation Eq. (66)
as

~ BB X(i) + X(i)t BB - - (A(i) - d) (73)L-J nl lTn nl lm - nTn mrn t »

I

where i = 0 and BB = (B + Bt)j2 is the Hermitian
part of B. Equation (73) determines X = X(O) + O(Ll3

)

accurately in leading order.
Analogously to the previous discussion we find that

also the higher orders of X = Li X(i) are obtained from
Eq, (73), with A(i) given by

A(i) = A(i-l) + X(i-l)tB + exv:» + X(i-l)tCX(i-l) .

(72)

(69)

(70)

(71)

Ll2
X tnn = ATnn--f- .

mil! n

(0) - - -
Anm = (wnIO(+)IWtn),

B nm = (XnIO(+)Iq,m),

CnTn = (XnIO(+)IXTn)'

with the definitions

Equation (68) cannot be solved directly for X. There
fore we obtain X iteratively. Let us first analyze Eq. (68)
in orders of the time step Ll.

We will see that the leading order is proportional to
Ll 2 : A~% = dnTn + O(Ll2 ) , because the forces of con
straint contribute only in the second order and therefore
1\lJ(+)) = Iq,) + O(~2). As the leading order of X nTn is
proportional to Ll 2 , the term xtex vanishes in leading
order and only the zeroth order of B contributes. The
zeroth order of B is equal to (q,n(0)IO(0)21~Tn(0))and
therefore Hermitian. Hence the lowest order of Eq. (68)
in Ll is

and

The forces of constraint are added in a second step

The following notation is used here for the time steps.
The time step is denoted by Ll. The wave func
tions have an integer argument denoting the num
ber of the particular time step relative to the ac
tual configuration. Hence the series of coordinates is
... , I~n( -2)), Iq,n(- )), l~n(O)), Iq,n(+ )), Iq,n(+2)), · ...
For convenience let us abbreviate the arguments for the
previous and the subsequent time step. Similar notation
is used for the atomic positions.

As a rule of thumb, the equations of motion for the
wave functions are integrated properly if the time step
Ll is related to the fictitious mass of the wave functions
mil! so that Ll2 / m 'l! lies in the range 0.1-0.15 a.u.38 For
most systems the mass mil! can be chosen to be 1000 a.u.,
resulting in a time step of about 10 a.u, or' 0.25 fsec.

During the dynamical simulation, we have to ensure
the orthogonality of the wave functions in an energy
conserving manner consistent with the accuracy of the
Verlet algorithm.P? The methods were originally invented
for molecular-dynamics simulations of polymers39 that
obey bond-length constraints. Car and Parrinello11 ,4 0

adopted this algorithm in their formulation of first
principles molecular dynamics. Later Laasonen et al.4 1

extended this method to the case of a position-dependent
overlap matrix, as used for Vanderbilt's ultrasoft pseu
dopotentials. I have adopted their strategy and extended
it to include the possibility of different occupations for
different states. This will be described in the following.

The wave functions are first propagated without con
straints, which yields Iq,)

and the Lagrange parameters Antn are determined itera
tively so that the constraints for the next time step

(66)

are exactly fulfilled within a given tolerance for the over
lap matrix. O(+) is the PS overlap operator for the next

(74)

However, there are many solutions to Eq. (73). They dif
fer by a matrix dX = (BB)-l D, where D is an arbitrary
antisymmetric matrix. Only a solution that fulfills

(75)
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will conserve the energy and is of interest.
To obtain X, we diagonalize B n 1n == Ll U~lblUl1n and

obtain its eigenvalues bi and the unitary matrix Un 1n

formed by its eigenvectors. From that we determine

n

ri irn.

(79)

n,1n

(81)

n,1nn

E = R[FR + L fn(~nlV'RHI~n)
n

- L(~nlV'R61~11l)Al1tn]. (80)

is sufficient. It is therefore not necessary to achieve self
consistency of atomic positions and Lagrange multipliers
iteratively, which would be computationally extremely
demanding. This is in contrast to the approach used
by Laasonen et al.,41 who suggest that A and forces be
determined self-consistently.

which in the stationary case is identical to Eq. (48) above.
The propagation of the ionic positions is straightfor

ward once the Lagrange multipliers are known. As seen
in Sec. V B, those will be calculated only after the new
positions are determined because the PS overlap opera
tor and hence the orthogonalization that yields the La
grange multipliers depend explicitly on the atomic po
sitions. However, the Verlet algorithm has only limited
accuracy in the time step ~. Hence it is sufficient if we
can predict An 1n up to the order ~ 1. This implies that a
linear extrapolation from the last two time steps

The requirement E == 0 results in an expression for the
force

Now we use the first energy derivative of the constraint
equation (~nI61~17t) and the requirement that A be Her
mitian to obtain

(76)

c. Propagating the atoms

The equations of motion for the ions are integrated as

The iterative procedure Eq. (76) for X == Li Xi has
a fixed point at the correct solution for Eqs. (75) and
(68). In each iteration Eq. (75) is exactly fulfilled, which
ensures energy conservation in each step.

This iterative scheme for X is a Taylor expansion in
~ if either all occupations are identical or if BS is unity
times a constant factor. As these requirements often are
not fulfilled, each order in ~ requires an additional itera
tion, which is similar to that described above, but with
out the term quadratic in X(i) and the non-Hermitian
part of B in Eq, (74). Owing to the close relationship
between the two nested iteration schemes, in practice I
perform only the outer iteration, which now also plays
the role of the inner iteration.

Evaluation of the overlap matrix A (i) does not require
that the scalar products of the wave functions be reevalu
ated. Instead, the matrix A(i) is calculated from Eq. (68)
using the matrices X(i) from the previous iteration steps.
Note also that BS needs to be diagonalized only once for
every time step, i.e., once for the entire iterative scheme
described in this subsection. Convergence is reached if
every element of the right-hand side in Eq. (73) is smaller
than a certain given tolerance. Finally we can predict the
new PS wave functions according to Eq. (65).

(77) 2. Renormalization of the aiornic masses

1. Forces consistent with the Lagrange multipliers

As mentioned before, the force component due to the
changing overlap operator described in Eq. (58) must be
modified in the molecular-dynamics formalism. Instead
of (q,nIHIq,17t)(!n + !17t)/2, one has to use the Lagrange
multipliers. This results from the condition of energy
conservation. The change of the total energy is

We insert the equations of motion and resolve the energy
derivatives using Eqs, (42) and (47) to obtain

The fictitious dynamics of the electronic wave func
tions has two main effects on the atomic trajectories.
First, energy is transferred constantly to the wave func
tions, which have a temperature that is very low com
pared to that of the ionic subsystem. The rate of
heat transfer is roughly proportional to the magnitude
of the forces acting on the ions and to the band gap
between occupied and unoccupied states.3 8 This effect
can be controlled for long simulations using two Nose
thermostats,42,43 one to keep the ions at their physical
temperature and one to keep the wave functions close to
the Born-Oppenheimer surface.

The second effect is that the ions propagate as quasi
particles dressed by the wave functions.Y' which increases
the effective mass. This effect can be compensated by
renormalizing the masses of the nuclei. The magni
tude of the effect can be estimated from an isolated
atom that experiences external forces, described by a
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FIG. 1. Partial waves and projectors for Mn. Left panel:
AE partial waves (solid lines) and PS partial waves (dashed
and dash-dotted lines). The "first" PS partial wave is a
dash-dotted line. Right panel: first (solid line) and second
(dashed line) projector functions. (a) and (d) show the re
sults for the first and the second partial wave of the 8 angular
momentum channel, respectively, (b) and (e) for the p chan
nel, and (c) and (f) for the d channel. 38 and 3p functions are
treated as valence states. Functions are scaled individually.

(84)

is therefore one-third of the trace of the mass tensor,
which has been modified after applying Gauss's theorem.
The expectation value ~n fn(q,1 - ~ V21~)at is nothing
other than the plane-wave part of the true electronic ki
netic energy. Hence the bare mass of the ions used in the
Lagrangian should be reduced by

4 '"'" - 1 2-8M == 3m '!' c: fat,n(w n\ - 2 V IWn)at.
n

potential ~xt(R) acting on the nuclei. Assuming that
the wave functions of the atom reside exactly on the
Born-Oppenheimer surface, the wave functions do not
chang~, except that they undergo a rigid displacement

and I~)at == -\V'~)at.k. Hence the Lagrangian can be
simplified to

L:' = ~ tR.(2m '1l L fat,n(V'iq,n\V'jq,n)at
1.,1 n

+MRbii) Ri - Eo[1J1 ] - v.,xt . (83)

Here Eo is the total energy of the isolated atom, which
is constant during the simulation. The constraints of
orthonormal wave functions are automatically fulfilled
because here q, denotes rigidly displaced PS wave func
tions of the isolated atom. The effective mass tensor
2m'1l~n fn (V'iq,n \Vjq,n) + M R 8ij is diagonal because
the isolated atom is spherically symmetric. The effec
tive mass

This correction has been included in all our simulations
described here. The quality of this correction can be
estimated by comparing the kinetic energy related to the
PS wave functions of the system of interest to that of the
isolated atoms.

VI. CONSTRUCTION OF PARTIAL WAVES
AND PROJECTORS

The basic ingredients of the PAW method are partial
waves and projectors. There is an infinite number of ways
to construct them. I will describe here in detail the par
ticular choice I made for this application. Even though
the solution of the problem is quite satisfactory, there
may be better choices than the ones described here. In
particular the construction of PS partial waves is com
pletely analogous to the construction of pseudopoten
tials with the pseudopotential method. The expertise
acquired with the pseudopotential method4S- 48 is likely
to create choices that permit a further reduction of the
number of plane waves. The partial waves and projector
functions obtained with the procedure described below
are shown in Fig. 1.

A. All-electron partial waves

The AE partial waves are obtained by radially inte
grating the Schrodinger equation

outward for the self-consistent atomic AE potential Vat

and a set of energies €t. In practice we use the scalar
relativistic version of Koelling and Harmon.t''

The AE partial waves are chosen to describe the phys
ically relevant states, i.e., those from the valence band
region, reasonably well. The energy €1 of the first partial
wave per angular momentum and site is usually chosen as
the energy of the lowest bound valence state of the atom.
The energy of the second partial wave is chosen after in
specting the scattering properties of the PAW method
for the isolated atom with only one partial wave. It is
placed at the energy where the scattering properties be
gin to deteriorate. There is no need for the partial wave
to be bound states because the exponentially increasing
tail will be canceled exactly by the identical behavior of
the PS partial waves. The number of partial waves is
then further increased until the scattering properties of
the valence band region are described satisfactorily.

An equally justified approach, more similar in spirit
to the linear methods, is to use increasingly higher en
ergy derivatives of the energy-dependent partial waves
obtained at one fixed energy. In principle, one can also
add partial waves from atoms with various occupations.

If core states extend beyond the augmentation re
gion, we subsequently orthogonalize the AE partial waves
within the augmentation region to core states centered
on the same site. We find that one AE partial wave per
angular momentum and site is often sufficient and that
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B. Pseudopartial waves

In order to obtain the PS partial wave, I define for each
AE partial wave a PS potential of the form

(91)

(92)

(90)

i-I

!Pi) == IPi) - L Ipj)(~j IPi) .
j==1

i-I

l<Pi) == l<pi) - L I<Pi )(Pi I¢i) ,
i=1

TABLE 1. Parameters for the construction of PS partial
waves. The cutoff parameter has been chosen as .,\ == 6 for all
atoms and angular momentum channels.

Symbol v(O)[H] €s[H] r», Ep Tkp Ed rkd

H -3.43 -0.234 0.45
Li --1.43 ---0.106 1.20
Be --1.40 --0.207 1.20 -0.079 1.20
B --2.20 -0.346 1.00 -0.137 1.00
c -2.47 ---0.501 1.00 -0.199 1.00
N --2.58 --0.677 1.00 -0.266 1.00
00. -3.19 -0.873 0.90 -0.338 0.90
Ob -2.60 ---0.873 1.00 -0.338 1.00
F -2.55 -1.090 1.00 -0.415 1.00
Fe 1.88 -0.020 1.50 -0.058 1.50 -0.287 1.50

0.000 1.50 0.000 1.50
Mn., 0.0 --0.194 1.50 -0.054 1.50 --0.257 1.50

1.50 1.50 0.500 1.50

Mnb -3.20 -3.138 1.50 -2.002 1.50 -0.257 1.50
-0.194 1.50 -0.054 1.50 0.500 1.50

Then the AE and PS partial waves are modified in order
to ensure the orthogonality of the PS partial wave with
the lower projector functions

If the result is zero, we set the projector function equal to
the cutoff function k(r). These projector functions must
be modified such that they fulfill the condition (PiI¢j) ==
8ij . This condition is now imposed iteratively beginning
with the lowest partial wave. The following equations
[(91)-(96)] should not be read as mathematical identities
but rather like a computer program: The left-hand side
is the product of the right-hand side, with the new value
overwriting previous values for the same symbol. I have
done this to avoid multiple symbols for the same quantity.

For a given partial wave denoted by subscript i, and
assuming that (Pkl¢i) == 8kj for k,j < i, the projector
functions are first orthogonalized to all lower PS partial
waves by

(88)

(87)

two terms yield a satisfactory description even for diffi
cult cases such as transition metals and systems in which
semicore states are treated as valence states. However, if
one is interested in states that lie far above the valence
band region, the number of AE partial waves can be in
creased further until the desired accuracy is achieved.

The entire construction is fairly insensitive to the
choice of the energies of the AE partial waves. Since
the valence band region can be described fairly well with
two partial waves, as shown in the linear methods, any
two partial waves from this region will span a very similar
portion of the Hilbert space. Even though the individual
partial waves and projectors will differ, they represent an
almost equivalent choice.

The values of the cutoff radius rk and the exponent A are
chosen such that this potential is virtually identical to the
AE atomic potential outside the augmentation region.
Often we choose A == 6 and rk as three-quarters of the
covalent radius. The values used in our calculations are
listed in Table I. The PS partial wave is obtained as a
solution of the nonrelativistic Schrodinger equation

To construct PS partial waves, I proceed in loose anal
ogy to the pseudopotential approach described in the
work of Hamann et al.,8,5o,51 which I have extended to
include several terms into the separable form. 2 1 However,
in general we do not perform the norm-conservation step
suggested there.

I first select a PS potential Vat. This is done in two
different ways, depending on the element.

(i) For transition metals, a polynomial of fourth order
is matched differentially to the AE potential. Outside
the matching radius the two potentials coincide. The
remaining free parameter, the value of Vat at the nuclear
site, is adjusted by hand.

(ii) For elements without d electrons in the valence
shell, Vat is obtained from the AE potential as Vat (r) ==
Vat(O)k(r) +[1- k(r)]vat(r), using a cutoff function of the
form

Finally the projector function and partial waves are
scaled so that (Pi!¢i) is unity

(89)

for the energy of the corresponding AE partial wave and
the potential Wi (r ) . The free coefficient c, in Eq. (88)
is then determined such that the PS partial wave coin
cides with the corresponding AE partial wave outside the
augmentation region.

c. Projector functions

Next we calculate preliminary projector functions ac
cording to

i-I

I~i) == I~i) - L !¢i) (Pi I¢i) .
j=1

IPi) == IPi) / (Pi I¢i) xc,

\¢i) == \1Ji) /c ,

l<Pi) == \¢i) / C •

(93)

(94)

(95)

(96)
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(98)

with dHi j and dO i j given as

D. The potential v

(_~V2 + Vat - €+ L IPi) (dHi j - €dOij)(Pjl)l~j) = 0
i,j

VII. ANALYSIS OF THE PARTIAL-WAVE
TRUNCATION ERROR AND EXTENSIONS

OF THE PAW METHOD

In the previous sections we have taken the point of
view that the PAW method is an exact formulation of
the Kohn-Sham equations, from which a practical scheme
is obtained by truncating two rapidly converging series
expansions. Here I will analyze the truncation errors of
the partial-wave expansion in detail and thus justify the
choices I made for wave functions and total energy ex
pressions. This section can be skipped by the practi
tioner. I recommend this section to those who are inter
ested in the underlying principles and possible extensions
of the present implementation of the PAW method.

A. Truncation error in the wave function

in detail. In particular, this approach ensures that the
states used to construct the PS partial waves are repro
duced correctly as atomic PS wave functions of the PAW
method, irrespective of the quality of the partial-wave
expansion.

Let me summarize which quantities we import from the
atomic calculation into the ab initio molecular dynamics
simulation: (i) the AE and PS core densities, (ii) AE and
PS partial waves l<Pi) and I¢i) and PS projector functions
(pil, (iii) the matrices (c/>il- ~V21c/>j) - (¢il- !V21¢j ) and
(c/>ilc/>j) - (¢il¢j) for the calculation of the one-center con
tributions of kinetic energy and overlap matrix (note that
the Laplacian for the AE partial waves is replaced by its
scalar relativistic counterpart), and (iv) the cutoff r C that
determines the range of the short-ranged compensation
densities.

(97)- - J'n(r') + n(r') -v(r) = vat(r) - dr Ir _ r/l - JLzc[n(r)].

The potential v is now obtained by subtracting the
potential of the self-consistent atomic PS density from
the PS potential used to define the PS waves:

This step is the analog to the unscreening of a pseudopo
tential performed in the pseudopotential approach.

Since the PS partial waves do not necessarily corre
spond to the atomic bound states, which are needed in
Eq. (97), the latter are obtained from the radial, separa
ble Schrodinger equation

The free constant c is used to avoid very large projector
functions, while the partial waves are very small and vice
versa. It has no influence other than to prevent very small
and very large numbers, which may create problems on
the computer. Once the set of projectors and partial
waves with index i are modified to obey the orthogonality
condition, one proceeds to the next set of projectors and
partial waves IPi+l), l<Pi+l), I~i+l).

dHi j = (<pil- ~V2 + Vatl<pj) - (~il- ~V2 + Vatl¢j),
(99)

dO i j = (<Pi I<pj) - (¢i I¢j) . (100)

A way to solve this equation is sketched in the Appendix.
To obtain the PS density we still need to define its

core contribution. The PS core density fiC is obtained by
matching a parabola differentially to the AE core density.
Outside the matching radius PS and AE core densities
are identical. Using the wave functions and occupations
of the atom one constructs a PS charge density nand
from that v according to Eq, (97).

E. Outlook

The procedure described above is by no means the
only way to create PS partial waves. There are a
number of different ways to construct first-principles
pseudopotentials.4s ,46 ,48 These methods can easily be
adapted to relax the norm-conservation condition, to al
low a larger augmentation region, and to include un
bound states. Each of them can be used to construct
PS partial waves corresponding to given AE partial waves
and, with the procedure outlined above, to construct pro
jector functions.

Once the PS partial waves are defined, it is recom
mended that the procedure described above be followed

1. Orthogonality to the core states

The main effect of the truncation of the partial-wave
expansions for the wave function is to redefine the trans
formation from the valence wave functions to the PS wave
functions. This in itself does not introduce errors, but it
affects the orthogonality to the core states. Whereas the
AE partial waves are constructed to be orthogonal to the
core states, a nonzero remainder of I~) -l:i l~i){Pilq,)
can create a nonzero overlap with the core states.

Therefore, I introduce a new definition of the trans
formation 'T that explicitly ensures that any PS wave
function is transformed onto an AE wave function that
is exactly orthogonal to the core states Ic/>C):

Iw) = I~) + L(Ic/>i) -1¢i))(Pilq,)
i

- L I</>C) (</>cl (1 - L I¢j)(pjl) I~)· (101)
i j

In the analysis of truncation errors it should be kept in
mind that Eq. (101) rather than Eq. (9) is the true def
inition of the transformation between PS and AE wave
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functions. Of course, if the partial waves form a complete
set, the two expressions are identical.

2. Additive augmentation

with the "AE projector functions" defined as

(Pi I == L ((pI¢» - 1 ) j i (pj I .
i

(103)

B. Truncation error in the expectation values

~A~~ == (~n - ~;1(1 - PC)A(1 - PC) - AIq,Tn - {iJ~),

(107)

for any function I\lJ) orthogonal to the core states. Hence
such a function IW) must be a superposition 2:i(l¢i)
I¢i) )Ci. If we insert this ansatz into Eq. (104) and exploit
(PiI<Pj) == lSij, it is clear that the coefficients must fulfill

(104)

(105)

While evaluating expectation values in Sec. VII A,
it was reasonable to neglect cross terms between the
three contributions of the wave function because I~) -
2:i l¢i)(Pil~) == 0 in the augmentation regions, if the par
tial waves form a complete set of functions in the aug
mentation region. However, if the partial-wave expan
sions are truncated, this condition is no longer exactly
fulfilled.

In the following I will use the symbols I\lJ 1
)

2:i I<Pi) (PiI~) for the one-center expansion of the AE

wave function and I~ 1 ) == :Li I¢i) (PiI~) for the one
center expansion of the PS wave function. The difference

~Anrn == LlA~~ + LlA~2~ between the matrix elements
of an operator A calculated directly from Eq. (101) and
(~nIAI~Tn)'with the PS operator from Eq. (11), is given
by

~A~~ == [(w~IA(1 - PC) - (~;IA]I~Tn - ~~)

+(~n - ~;I[(1 - PC)Alw~) - AI~:n)],

(106)

The matrix (Pil¢j) is none other than the matrix aij de

fined above, as it fulfills the relation 2:k (PiI¢k) (Pk I¢j) ==
8 i j. Equation (105) can only be fulfilled if either aij has
a zero right-hand eigenvalue or the functions on the left
hand side can add up to zero; these are the exceptions
given above. This concludes the proof of the complete
ness of the PAW basis set.

Note the difference between the AE and the PS projector
functions.

To show that the transformation is unique, we test
whether any nonzero function orthogonal to the core
states is mapped onto a zero PS wave function. This
would be the case only if

When truncating the partial-wave expansions it is im
portant that the partial-wave expansions of the AE and
the PS wave functions are truncated in a completely anal
ogous way. This principle is called additive augmentation
and has important advantages.

First, the wave functions of the PAW method are dif
ferentiable to an arbitrary order if the PS partial waves
have been constructed to be differentiable to an infinite
order. (In many implementations of the LAPW method
the wave function is even discontinuous.)

Second, higher partial waves not explicitly included in
the partial-wave expansions are represented by the tails
of the plane-wave part that extend into the augmentation
region.

Finally, the PAW basis set is complete whenever the
plane waves form a complete basis set, irrespective of
the partial-wave truncation. This justifies the use of
partial waves imported from the isolated atom with
out adjusting them to the actual potential, as done in
the linear methods. The use of frozen partial waves
has substantial advantages in combination with the first
principles molecular-dynamics approach because it elim
inates a large number of parameters that otherwise have
to be treated as dynamical variables or determined vari
ationally in each time step to a very high degree of accu
racy.

The principle of additive augmentation itself is not
new and has been exploited to some extent in the
LMTO method and in the APW method of Soler and
Williams. 15- 17 There the angular momentum expansions
of the wave function and charge density were truncated
in the same way, resulting in a very rapid f convergence.
As a result of the projector augmentation, however, we
can exploit this principle even on the level of individual
partial waves.

Here I will show that truncation of the partial-wave
expansions does not affect the completeness of the ba
sis set: If a set of PS wave functions forms a complete
basis, the corresponding basis of projector augmented
wave functions is complete in the Hilbert space orthog
onal to the core states. For this to be true two weak
conditions must be fulfilled: There is a matrix aij such
that 2:k aik(Pkl<pj) == lSij, which has no zero right-hand
eigenvalues.V and the differences between AE and PS
partial waves l<pi) - I¢i) are not linearly dependent.

To prove this statement, it must be shown that for
every AE wave function orthogonal to the core states
there exists one and only one well-defined PS wave func
tion. For linear transformations such as the ones consid
ered here, this implies first that we can define an inverse
transformation ,-I from the AE wave function to the PS
wave function. This is indeed possible and the expression
is formally very similar to the forward transformation:

(102) where pc == L:i I<Pi) (<Pi I is the projection operator on the
core states.
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The first term ~A~~ is proportional to the difference
I~) _1~l) between a PS wave function and its one-center

expansion, whereas aA~2~ depends quadratically on it.
Consequently both terms converge to zero as the partial
wave expansion is made complete.

The first term is a matrix element between the differ
ence between the PS wave function and its one-center
expansion, which is largest at the surface of the aug
mentation region, and a function that is localized in the
center of the atom, namely, the difference between the
one-center expansion of the AE wave function and the
one for the PS wave functions. For quasilocal operators
such as the kinetic energy or the real-space projection op
erator needed for the total energy, one profits from the
fact that the two functions are largest in opposite regions
of space, resulting in small errors.

The fact that the dominant truncation error aA~~
is proportional to the difference between AE and PS
partial waves is the reason for truncating both partial
wave expansions in exactly the same way. Partial waves
for higher energies become increasingly insensitive to

I

the shape of the potential: High-energy electrons pass
through the atom too fast to be seriously affected by
the potential. Hence the difference between the AE and
PS partial waves vanishes for high energies, even though
each partial wave itself is still sizable. Since they appear
in pairs of opposite sign in the truncation error, the con
sistent truncation of both expansions is highly favorable.
I shall return to this point when comparing the PAW
with the LAPW method.

c. Truncation error in the total energy

The error in the total energy can be divided into two
parts. The first is due to the difference between expres
sions (19)-(21) and the total energy calculated directly
using the expectation values for charge density, kinetic
energy, and overlap obtained via Eq. (11). The second
source of the error is due to the approximations described
in Sec. VIIB.

The first error term is of the form

~E(I) = '" r dr[ii(r) - iiI (r)] f dr' (nl(r') + n~(rl) _ n1{r
l)

+ nR(r
l)

- v(r»)
~ lOR R Ir - r'l Ir - r'l

+ { dr {[ii (r) + n I ( r) - ii I
( r )]Ex c (ii + n I - nI) - n(r )Ex c (n) - n I (r )Ex c ( n I) - ii I ( r )Ex c ( ii.I )} • ( 108)

lOR

It is easily seen that both terms vanish as n - nI, i.e., if
the partial-wave expansions are complete. Furthermore
the integrands go smoothly to zero at the boundary of
the augmentation region.

To get a better idea of these terms, we can expand
them in orders of n - iiI and Iq,) - Iq,I) and consider
only terms up to the first order:

AE(1) = L f dr[n(r) - nl(r)][v1(r) - ii1(r)]
R

+O(ii - nl )2

= 2Re L fn(~n - q,~I(v1- v1)1q,~)
Rn

(109)

Before returning to ~E(I), I consider the errors that
propagate from the approximation of the expectation val
ues. The error can be obtained via Eqs. (106) and (107),

I

I

where the operator A is -!V2 + V - En, where v is the
exact potential and En the exact energy eigenvalues. The
error is the sum of the diagonal matrix elements with
the eigenfunctions. Let us consider again only the lowest
order in I~) - Iq,l):

aE(2) = 2Re L fn(q,n - q,~1

R,n,i

x{(l - PC)[(v - Vat) - (En - €;)]lcPi)

-[(v - Wi) - (En - €;)]I<,bi) }(Pilq,n)
+O(Iq,) - 1~I))2 , (110)

using Eqs. (86) and (89), which define the partial waves,
and (106). (Note that we need to apply a linear trans
formation to partial waves and projectors to undo the
scrambling of partial waves described in Sec. VI C.)

Combining the two sources of error, ~E(I) from
Eq. (109) and aE(2) from Eq. (110), we find

~E(I) + ~E(2) = 2Re L fn(~n - q,~1{(1 - PC)[(v - Vat) - (En - €;)]I<Pi)
R,n,i

(111)

Let us simplify Eq. (111) by replacing v with VI, which is justified since the difference between them also vanishes
if the partial-wave expansions are complete and therefore does not contribute to the lowest order of the truncation
error in Iq,) _I~l). Furthermore, we exploit the fact that (q, - q,11(Wi)Vat)l~i) vanishes because (Wi - Vat)l~i) can be
expressed as a superposition of projector functions [Eqs. (89) and (90)] and (q,-~lIPi) = (q,I(l-Lj Ipj)(<,bj I)IPi) = 0:
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~E(I) + ~E(2) = 2Re L fn(q,n - ~~I

R,n

(112)

X (dH",I" €ldOI,,''')(PI''I}¢I) = O.

Inserting the ansatz, we obtain expressions for the ma
trices a, b, C

(114)

(113)

IcPl) == 14>?) + L 14>~)ahl ,
h

I¢l) == I¢?) + L I¢~)ahi ,
h

IPi) == L Ip?,)bI'1 + L Ip~)Chl .
I' h

The coefficients will be determined such that (i) the or
thogonality relation between projector functions and par
tial waves is fulfilled and (ii) the scattering into the higher
partial waves vanishes:

(Pi'I¢I) = 81,1' ,

(¢~IOn(-!yr2 + VI - Ez)I4>I) == 0,

(¢~IOn (_~V'2 + vI - €I + L !PI')
[',l"

molecular or crystalline environment. This set of par
tial waves will be divided into a subset of "lower" partial
waves that will be used as partial waves in the way out
lined in the previous sections and a subset of "higher"
partial waves. The lower partial waves are adjusted to
the actual potential by mixing with the higher partial
waves. This approach avoids the inclusion of additional
projector functions and the corresponding increase of the
computational effort by determining the coefficients of
the higher partial waves self-consistently from the po
tential within the sphere. The procedure can be termed
downfolded augmentation.

Let us denote the higher partial waves by the sub
scripts h, h' and the lower partial waves that adjust to the
potential by the subscripts l, l': The rigid partial waves
that have been constructed from an atom and that will be
used as a reference are distinguished from the adj listing
partial waves by the superscript O.

I make the following ansatz for the lower partial waves
and projectors

Equation (112) is an important result. It tells us that
the strongly varying potential of the core and the nu
cleus does not contribute to the error. This is a result of
an efficient cancellation of two errors, namely, ~E(I) and
~E(2). In a hand-waving way, the term proportional to
(1-PC)(v l

- Vat )l¢i) - (vl-vat)l¢i) describes the charge
density transferability error because it depends on the de
viation of the potential from the atomic one, whereas the
term proportional to (En - E}) I¢i - ¢i) describes the error
in the scattering properties or the energy transferability.
Note that the constant term in v and v almost cancels a
similar term in En - E}. It is also worthwhile to note that
the right-hand side of the product vanishes differentiably
at the boundary of the augmentation region, whereas the
term (q,1 - (q,11 is a small quantity, which is expected to
be largest far from the center of the atom. The resulting
expression could actually be used to estimate the partial
wave truncation error in practice.

D. Extensions of the PAW method

The PAW method lends itself to a number of extensions
which, though not yet implemented, may be interesting
to keep in mind. These extensions concern the use of
partial waves that adjust to the actual potential and the
relaxation of the frozen-core approximation. I will show
in Sec. VIII that the PAW method is highly accurate even
without these features owing to the rigorous exploitation
of the principle of additive augmentation. However, I
want to demonstrate that the PAW method is sufficiently
flexible to accommodate them, if desired. This will turn
the linear transformation between AE and PS wave func
tions into a nonlinear one. As in the linear methods with
adjusting partial waves, the nonlinear degrees of freedom
can be relaxed during a self-consistent procedure. How
ever, some caution is required if they are to be used in
combination with a fictitious Lagrangian formalism be
cause all nonlinearities must be treated consistently. In
contrast to the linear methods in their present implemen
tation, the partial waves will be adjusted here to both
spherical and nonspherical parts of the on-center poten
tials.

ah,l == - L Shh'(EI)(4>~,IOn( - ~ yr2 + vI - Ez) I¢?) ,
h'

(115)

Ch,l == - L(¢~,IOn(-~V2 + vI - Ez) IJ;?,) [dH - EldO]~l '
I'

1. Optimization of partial waves
to the actual potential

Here I describe how the partial waves can be adjusted
to the actual potential within the frozen-core approxima
tion. In Sec. VII D 2, I will describe how to relax also
the frozen-core approximation.

We start out with a large set of partial waves, one that
is sufficiently complete to describe the wave functions ac
curately for all possible potentials that may occur in a

b, l' = 8l I' - ~ Clhahl' ,, , L..J
h

(116)

(117)
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where 3',hh'(€) is defined by

L31,hh,,(€)(<ph"l(Jn(-~V2 + v l
- €)I<Ph') = dh,h'. (118)

hIt

The relaxed-core states l4>i) depend explicitly on the co
efficients aij and bi j . Using the fact that the core states
are solutions to some Schrodinger equations, we see that
the second equation reduces directly to the orthogonality
condition between relaxed core states and the new par
tial waves. The resulting partial waves for the relaxed
core are

It can easily be shown that the scattering properties
of the atom are reproduced correctly in the neighbor
hood of the energies for which partial waves have been
included. The logarithmic derivative of the PS and AE
wave functions and their first derivatives agree beyond
the core region. The proof is analogous to that for local
potentials, which can be found in Skriver's book. 53

Thus the scattering properties of the atom can be im
proved systematically for an arbitrarily large energy re
gion by increasing the number of partial waves. This
principle is illustrated in Fig. 2 for the example of man
ganese. The semicore states have been treated as va
lence states, which is not necessary in most applications.
The logarithmic derivatives obtained with only one par
tial wave per angular momentum-not to be confused
with the setup Mn, in Table I-result in a poor descrip
tion of the valence region. If the number of partial waves
is doubled, the scattering properties are accurate up to
approximately 1.5 Ry above the occupied states as shown
in Fig. 2, which is more than sufficient for most calcula
tions. This choice corresponds to the number of partial
waves used in the linear methods. Our experience is that
first-row elements can be well described with only one
partial wave per angular momentum and that two pro
jectors per angular momentum are sufficient for the nar
row d states and if semicore states are treated as valence
states.

B. Accuracy of the AE wave functions

VIII. NUMERICAL TESTS

A. Scattering properties

In order to analyze the accuracy of the AE wave func
tions obtained with the PA.W method, let us calculate the

3jIe( € ) (4)ko I(1 - PC)(- ~V 2 + V1 - e)

x (1 - PC)I<pIO) = 8j l . (123)

where 3jle(e) is defined by

PC=Li l4>i> (<Pi I denotes the projection onto the relaxed
core states. The validity of the result can be verified by
inserting it into the defining equations. The result can be
further simplified using the fact that the core states are
solutions to some Schrodinger equations and the known
orthogonality relations. It should, however, be noted
that (1 - PC)l4>iO) vanishes as the frozen-core states and
relaxed-core states become similar. Hence these func
tions should be normalized before inserting them into
the above equation in order to avoid a division by zero.
If semicore states are present, the same transformation
should be performed between the PS partial waves and
PS core states in order to guarantee that PS and AE
partial waves match at the boundary of the augmenta
tion region. This linear system of equations can be solved
and iterated until self-consistency is achieved among core
states, AE valence partial waves, and the potential.

(122)

(120)

(121)

(119)

(¢iOI- ~V2 + v l
- €Iet>j) = 0,

(4)il- ~V2 + v l
- €I<pj) = 0 .

/<Pi) = (1 - PC) [14>?) - L I<PjO)Sjk (€i)
j,1e

x (<pkOI(l - P C
) ( _ ~V 2 + v l

- €i)

x(l- PC)I¢?>] ,

l4>i) = I<t>?) + L l4>jO)aji + L Iet>i)bji ,
j j

where Iet>i) are the AE partial waves orthogonalized to the
relaxed-core states, I¢?) are the partial waves orthogonal
ized to the frozen-core states, I<pi) are the relaxed-core
states, and l¢iO) are the frozen-core states. The coef
ficients aji and bji are determined such that the total
energy is minimized

The matrices dR"" and dO',l' are defined as in Eqs. (99)
and (100) using only the lower, optimized partial waves
and the actual one-center potentials instead of the atomic
potential. If the partial waves are made self-consistent
in each time step, also the projections (pdW n ) must be
transformed according to the change in the projector
functions. When adjusting the partial waves and pro
jectors, the energies €l are chosen relative to a potential
reference, such as the average potential in the augmenta
tion sphere, in order to avoid a dependence on a arbitrary
overall shift of the potential.

2. Beyond the frozen-core approzimation

Even though the present method has been imple
mented in the frozen-core approximation, it is not lim
ited to it. The core states can of course always be re
laxed within an internal self-consistency loop for core
wave functions and one-center potentials. The only diffi
culty is that the orthogonality between AE partial waves
and core states must be restored. One could simply imag
ine using a Gram-Schmitt orthogonalization procedure.
However, this would produce partial waves that are no
longer close to the solution of the Schrodinger equation,
resulting in large partial-wave truncation errors.

Let us therefore mix the partial waves with both the
frozen- and the relaxed-core states to impose orthogonal
ity and to minimize the total energy. We can make an
ansatz for the new AE partial waves



wave function is smaller than 1%.
In order to see the deviations let us compare the wave

functions for an energy of +13.6 eV; see Figs. 3(d)-3(f).
This is about 20 eV above the valence states. Whereas
the wave functions of the p and d angular momenta are
still quite accurate, we see deviations of 15% in the s-type
wave function. This type of deviation, namely, an under
estimation of the maxima of the wave function close to
the nucleus, is a typical signature of partial-wave trunca
tion errors in the wave function. We can conclude that
the PAW method predicts the wave function with high
accuracy over a wide energy range.
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FIG. 2. Scattering properties of the Mn atom. Logarithmic
derivative function Dl(€) == r8r<Pl(r, €)/<p(r, €) with r == 3ao
for s, p, and d angular momenta versus energy. Triangles,
circles, and squares indicate the exact result for s, p, and d
angular momenta, respectively. Solid lines are obtained with
the PAW method using the setup denoted as Mns in Table I.
Dashed lines have been obtained with the same setup, but
without the second partial wave per .e.

scattering states of an isolated manganese atom using the
PAW method and compare the resulting AE wave func
tions with the direct integration of the radial Schrodinger
equation. Figures 3(a)-3(c) shows the wave functions for
an energy of -8.16 eV, which lies in the range of the oc
cupied states. The deviation between the PS and the AE

c. Structural properties

I have performed a number of test calculations on
simple molecules to establish the accuracy of the PAW
method. I have chosen small molecules because they
exhibit the strongest nonspherical potentials and the
smallest bond lengths and therefore should provide strin
gent test systems for any electronic structure method.
The results are summarized in Table II together with
the results of other recent accurate all-electron LDA

TABLE II. Comparison of binding energies, structural
properties, and vibrational properties for dimers obtained
with the PAW method at a plane-wave cutoff of 30 Ry with
those of other all-electron LDA calculations. Note that the
B 2 and the O 2 dimer of Ref. 54 are non-spin-polarized.

FIG. 3. Comparison of atomic wave functions of Mn using
the PAW method with the exact result. Each graph shows the
wave function obtained from the PAW method (solid line), the
exact AE wave function (bullets), their difference magnified
by a factor of 10 (dash-dotted line), and the PS wave func
tion (dashed line) for a given energy and angular momentum.
(a)--(c) are obtained at an energy of -8.16 eV, which lies in
the valence band region; (d )-(f) are obtained at an energy of
+13.61 eV, which is far above the valence band region. (a)
and (d) are s-type wave functions, (b) and (e) are p-type wave
functions, and (e) and (f) are d-type wave functions.

o 1 2

r (ao)

1 2

r (ao)

Molecule Quantity PAW Other LDA

H2 EB (eV) 4.62 4.65,8 4.6b

d (ao) 1.46 1.45,c 1.4S b

w (em-I) 4040 4160b

Lb EB (eV) 1.04 1.00,a 1.02b

d (ao) 5.13 5.12,c 5.20b

w (em-I) 335 322 b

Be 2 EB (eV) 0.53
d (ao) 4.51 4.52 c

w (em-I) 367
B2 EB (eV) 3.78 3.S b

d (ao) 3.03 3.0S b

w (em-I) 1060 1030b

N 2 EB (eV) 11.38 11.47,a 11.3b

d (ao) 2.09 2.07,c 2.071>
w (em-I) 2417 2380b

O 2 EB (eV) 7.33 7.48,a 6.2 b

d (ao) 2.32 2.29b

w (em-I) 1660 1620b

F2 EB (eV) 3.11 3.33,63.1b

d (ao) 2.67 2.62,c 2.63b

w (em-I) 1148 1060b

Fe 2 EB (eV) 3.99 4.05,d 2.8ge

d (ao) 3.68 3.74,d 3.70e

w (em-I) 441 418,d 412 c

"Reference 54.
bReference 55.
"Reference 56.
dReferenee 58.
"Reference 57.
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D. First-principles molecular dynamics

FIG. 4. Energy contributions during a first-principles
molecular-dynamics simulation of an iron dimer. The
dash-dotted line is the LDA total energy, the dashed line the
fictitious kinetic energy of the wave functions, and the solid
line the conserved energy. All energies are plotted relative to
their initial values. See text for discussion.

The results agree very well with the AE calculations
of Chen et al.,61 who predict dMn-F = 3.20ao and
dM n - O = 2.96ao. As a comparison, the pseudopoten
tial calculations of Chen et ale overestimate these bond
distances by about 2.5% relative to the AE results.

The calculations of MnF03 demonstrate that the PAW
method faces no problems in dealing with high-oxidation
states. Furthermore they show that also calculations
with unfrozen-semicore states are feasible with moderate
computational effort.

I conclude that the PAW method matches the accu
racy of the best existing schemes within the LDA. Even
though we have examined simple molecules here, stud
ies of larger systems have also yielded a similar accu
racy of structural parameters for which data existed for
comparison.62-67

To illustrate the quality of dynamical simulations I
show in Fig. 4 the various energy contributions to the
dynamics. The potential energy and the fictitious ki
netic energy undergo a regular oscillation with a period
that corresponds to 441 cm-1 , which agrees well with
the previously calculated vibration frequency of 412-418
cm- 1 . 57 ,58 The solid line represents the conserved energy
which should be constant in a high-quality molecular
dynamics simulation. Here the conserved energy devi
ates less than 0.8 meV from the initial value. No drift has
been observed within 10-5 H. Hence the quality of energy
conservation is as good as that obtained with traditional
Car-Parrinello simulations using pseudopotentials.

The oscillations of the fictitious kinetic energy should
not be misinterpreted as deviations from the Born
Oppenheimer surface. The latter are irreversible and
their signature is a monotonous drift of the fictitious ki
netic energy to higher values, accompanied by a simul
taneous drift of the nuclear kinetic energy towards lower
values. The oscillations of the fictitious kinetic energy
seen in Fig. 4 represent the motion of the wave function
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calculations.54-58

I used fcc supercell with a lattice constant of 30 a. u.
The PS wave functions have been expanded up to a plane
wave cutoff of 30 Ry. The charge density has been ex
panded to 60 Ry. The augmentation charge density has
been expanded up to l = 2. I used the Perdew-Zungerf?
parameterization of Ceperley and Alder's Monte Carlo
calculations of the free-electron gas.60 The parameters
used to define the PS partial waves are listed in Table I.
For the O 2 dimer calculation we used the setup denoted
by Oa in Table I. The setup O, resulted in a frequency
about 5% too low due to the overlap of the augmenta
tion regions in the O2 molecule. This setup (Ob) has been
used in the calculations of MnF03 described below.

The atoms have been calculated with integer occupa
tions, which makes them nonspherical. An exception is F,
which prefers to spread the two 2Pt electrons over three
orbitals. In the case of Fe2 we use a numerical spherical,
spin-polarized calculation on radial grids in the experi
mentally observed valence configuration dtdfs2 . This is
not the ground-state configuration of the LSDA, but it
has been used to allow comparisons with previous calcu
lations.

Dioxygen and the boron dimer have been calculated
in the triplet configuration, and the iron dimer has been
treated in the septet configuration. All other dimers have
been calculated in a non-spin-polarized fashion. Binding
energies have been reduced by the zero-point vibration
energies.

Vibrational frequencies have been obtained by dynam
ical simulation. Hereby I expanded the bond length
by approximately 5% and let the system evolve unper
turbed according to equations of motion. No thermo
stating has been used for electrons or ions. I used a time
step of 10 a.u. for all molecules, except for the hydrogen
molecule, for which I used a time step of 1 a.u. The H2
vibrational frequency obtained with a time step of 10 a.u.
is about 10% lower and that obtained with 5 a.u. is 1.2%
lower. For N2 , the reduction of the time step to 5 a.u.
lowers the frequency by less than 1%.

The results agree very well with other AE calculations.
The bond length deviates typically by less than 1% and
vibrational frequencies deviate typically by 4%. Binding
energies have deviations of 0.1-0.2 eV, which is within the
accuracy of previous calculations. Note that the largest
discrepancies can be reduced further by increasing the
plane-wave cutoff.

In order to study the other worst case for the PAW,
i.e., that in which the density deviates strongly from the
atomic density, I studied MnF03 • In this compound, the
manganese occurs in a formal oxidation state of seven.
The structure is that of a slightly distorted tetrahedron
formed by the oxygen and fluorine atoms, with the man
ganese in its center. In this system I also compared a
calculation with frozen-semicore 3s and 3p states with
one that included these electrons explicitly as valence
electrons. Treating the semicore states as valence states
results in bond distances of dMn-F = 3.205ao (ao is the
Bohr radius) and dMn-O = 2.973ao, which agrees very
well with the results when keeping the semicore state
frozen, namely, dM n - F = 3.189ao and dM n - O = 2.976ao.
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on the Born-Oppenheimer surface. Its influence on the
motion has been compensated by the renormalization of
the nuclear masses by 8% as described in Sec. V C 2.

In conclusion it has been demonstrated that the PAW
method allows high-quality energy-conserving molecular
dynamics. Molecular-dynamics simulations have been
performed on larger systems and the results are published
elsewhere.6 2 ,63

E. Plane-wave convergence

s
0)

W
<l

0.0

-0.5

Figures 5-7 show the plane-wave convergence of total
energy, binding energies, and bond distances obtained
with the PAW method for all first-row elements (except
carbon) and iron as an example of a transition meta1.6 8

Convergence to 0.1 eV is achieved at about 30-40 Ry
even for difficult cases, such as oxygen and fluorine, and
substantially earlier for other elements. Structural prop
erties such as the bond distances are accurate to 0.02ao
at a cutoff of 30 Ry, which is less than- 1% of the bond
length. Binding energies converge faster than absolute
total energies, and the error at 30 Ry is as small as 0.1 eV.

For oxygen, we can compare this plane-
wave convergence with that of Vanderbilt's ultrasoft
pseudopotential.U The accuracy and the plane-wave con
vergence of our calculations are apparently comparable
to the "hardest" pseudopotential used. It is not unex
pected that a similar plane-wave convergence is obtained
for the PAW method and Vanderbilt's ultrasoft pseu
dopotentials if a similar choice of PS wave functions is
used in our calculation and in the construction of the
ultrasoft pseudopotentials.

In all calculations shown here we expand the charge
density in plane waves up to a plane-wave cutoff that
is only twice that used to expand the wave functions.
Hence many operations, such as Fourier transforms eval
uation of the potential-energy part of E, are performed as
if the plane-wave cutoff' were only one-half of that actu
ally used. This is one advantage over Vanderbilt's ultra
soft pseudopotentials, which either require a plane-wave

2

>
~
W
<1

0

10 20 30 40 50
Epw(Ry)

FIG. 5. Plane-wave convergence of the atomic total energy
for first-row elements and iron. Epw is the plane-wave cutoff
for the wave function. ~E is the total energy relative to the
result obtained with Epw = 50 Ry. The following symbols
are used: H (6), Li (*), Be (c», B (V), N (<J), 0 (0), F (0),
and Fe (0). For details see text.

FIG. 6. Plane-wave convergence of the binding energy for
dimers. ~E is the binding energy relative to the result ob
tained with Epw == 50 Ry. The symbols are the same as in
Fig. 5. See text for details.

cutoff that is substantially larger than twice the wave
function plane-wave cutoff' or where one has to resort to
multigrid techniques such as described by Laasonen et
a1.4 1

The plane-wave convergence of the PAW method is al
ready close to that of the LAPW method, which predicts
mRy convergence of the total energy at a plane-wave cut
off' given by Ep w = (5 + lmax) 2 /r&tTa5 Ry, where lmax is
the highest angular momentum of the wave functions and
TMT is the muffin-tin radius. For a system such as oxy
gen with a muffin-tin radius of l.lao as is necessary for
molecular bonds, the plane-wave cutoff should be about
30 Ry. This is a better convergence than that produced
by the present implementation of the PAW method since
the former corresponds to mRy convergence.

IX. COMPARISON WITH EXISTING METHODS

One can observe that AE and the pseudopotential
methods introduced in the past few years seem to con
verge. Vanderbilt's ultrasoft pseudopotentials'' opened
the way to the efficient study of first-row and transi
tion metals using a plane-wave-based pseudopotential
approach. Conversely Goedecker and Maschke'i" have

0.4

0.3

0
0.2

co
~ 0.1<j

0.0

-0.1
10 20 30 40 50

Epw(Ry)

FIG. 7. Plane-wave convergence of dimer bond lengths.
~E is the bond length relative to the result obtained with
Epw ::::: 50 Ry. The symbols are the same as in Fig. 5. See
text for details.
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n

2. Vanderbilt's ultrasoft pseudopotentials

(126)

(125)

Vnl(r,r') = L(rlpi)((cPil- ~V2 +v~tlcPj)
i,j

Vanderbilt recently introduced ultrasoft pseudopoten
tials that relax the norm-conservation condition.V'" This
approach has two basic ingredients: First, the wave
functions are not norm conserving and second, general
ized separable pseudopotentials9,21-an extension of the
Kleinman-Bylander potentials7°-are used.

These two ingredients of the ultrasoft pseudopotentials
and the PAW method are similar. In addition, the projec
tor augmentation uses concepts from the generalized sep
arable pseudopotentials and, like other augmented wave
schemes, its PS wave function or envelope function has a
different norm than that of the AE wave function. The

The potentials V~t, V~t, and v are obtained from the
charge densities nand n of the atoms. Also compen
sation charge densities in E are kept frozen and are im
ported from the isolated atoms. The first-order change of
the total energy with respect to a change in the compen
sation densities has been absorbed by the nonlocal PS
potential. The approximations are well justified as long
as the PS charge density is sufficiently close to the AE
charge density. If the condition of norm conservation is
imposed, the overlap operator is identical to unity.

We thus obtain the form for the total-energy functional
that is well known from the pseudopotential method,
which is none other than that actually implemented in
the original Car-Parrinello codes22 using generalized sep
arable pseudopotentials.P! Achieving a close similarity of
the computationally demanding plane-wave expressions
to existing Car-Parrinello codes was one of my goals while
deriving the PAW method. This allows us to make direct
use of the technology of existing methods, while incorpo
rating the full-wave functions.

The major difference in the computational effort re
quired for the PAW method and the traditional pseu
dopotential approach is the explicit inclusion of the one
center terms in the PAW method. The related effort,
however, scales linearly with the number of atoms and
is in practice negligibly small. Furthermore, the PAW
method provides new flexibility to increase computa
tional efficiency and accuracy. We can use larger core
radii, and by relaxing the norm-conservation condition
we can use smoother PS partial waves and reduce the
basis set just as in Vanderbilt's ultrasoft pseudopoten
tials. The trade-off of this, however, is that the PS wave
functions have to be orthogonalized in the presence of a
nontrivial overlap operator. Hence the decision in favor
of or against the norm-conservation condition depends
on the system under study.

and the constant is the so-called self-energy

(124)
n

A. Pseudopotential method

1. Norm-conserving pseudopotentials

The pseudopotential approach, based on generalized
separable potentials,21,70 can actually be derived from
the PAW method by making one well-defined approxi
mation. This way of approaching the pseudopotential
theory sheds light on the underlying principles of the
pseudopotential approach. Furthermore, the comparison
will provide a one-to-one correspondence between quanti
ties in the PAW method and those in the pseudopotential
method. In order to alert the reader to this fact, I have
called the plane-wave part of the wave function the "PS
wave function."

Before we start comparing PAW and the pseudopoten
tial approach, let us recall what is termed the "pseudopo
tential approach." A more extensive description can be
found in Refs. 8 and 50.

A valid first-principles pseudopotential obeys the fol
lowing conditions.

(i) For the atom, the PS wave functions agree with the
AE wave functions beyond the core region.

(ii) Atomic eigenvalues and the first energy deriva
tive of the logarithmic derivative of the energy-dependent
partial waves agree with those of the AE calculation.

(iii) The norm of the atomic PS wave function is iden
tical to that of the true wave function.

Owing to the construction described in Sec. VI, the
PAW method fulfills the first two conditions automat
ically. Even though the third condition is usually not
fulfilled, it can be imposed.

In order to reduce the PAW method to the traditional
pseudopotential approach, we must make a Taylor expan
sion of the total energy in terms of the deviation of the
one-center densities n 1 and ii I from their isolated atom
values. This yields, to first order,

shown that the LAPW method can be simplified to yield
pseudopotentials and introduced techniques very similar
to the pseudopotential approach into the LAPW method.
I believe that the PAW method actually bridges the gap
between these two approaches, namely, the pseudopoten
tial approach and the augmented-wave methods. On the
one hand, it is an augmented-wave method that yields
the full wave functions. It can be regarded, in a sense,
as a generalization of the LAPW method. On the other
hand, most of the operations done on the plane-wave part
are in fact identical to those performed in the plane-wave
based pseudopotential approach. I view this as a promis
ing development, as it allows the virtues of two separate
techniques to be combined. In this section I will there
fore discuss the relationship between the PAW method
and other approaches.

The term linear in the density operator is a nonlocal pseu
dopotential
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where (}OR is a step function that is unity within the aug
mentation sphere OR and zero outside. The coefficients
a and b,

are determined such that the wave function is differen
tiable at the sphere radius. For reasons of simplicity we
can write these equations for only one angular momen
tum component of the wave function.

The same result can also be reproduced using projec
tor functions: First we construct two AE partial waves
per angular momentum and site as the partial wave \1>{t)
for a given energy tv, yielding I¢v), and its energy deriva-
tive I¢), where the overdot stands for energy derivative.
Then we construct PS partial waves analogously to the
procedure described in Sec. VI. When constructing the
projector functions, the augmented-wave methods devi
ate from the recipe given in Sec. VI and build them up
as superpositions IPi) == Lj (V 2

(JO R ) I¢j )Cji' The coeffi
cients Cij are determined such that the orthogonality con-
dition (Pil¢j) == dij is fulfilled. 71 The projector functions
corresponding to the linear methods are localized on the

respect to the one-particle energy, resulting in energy
independent basis functions of a type previously sug
gested by Marcus'' in the context of the APW method.
This allowed the wave functions to be obtained by ma
trix diagonalization. It also led to the definition of basis
functions such as linear augmented-plane waves, linear
augmented muffin-tin orbitals, and many more.

All linear methods have in common that two partial
waves of the spherical part of the potential within the
muffin-tin sphere are matched at the sphere radius to a
so-called envelope function, which corresponds to the PS
wave function of the PAW method. The PAW method
modifies precisely that principle. Instead of determining
the coefficients of the partial-wave expansion from the
value and derivative of the PS wave function at some
sphere radius, it uses the more general principle of pro
jector augmentation. We have seen in Sec. II that the
scalar product with some projector function is the most
general way to determine these coefficients linearly frorn
the PS wave function. There are other differences to
the linear methods made possible by this more general
approach which provide the important practical advan
tages. Those will be discussed later.

Here we show that the LAPW method is, in some
sense, a special case of the PAW method, namely, that it
is possible to formulate the augmentation by matching as
in the linear methods by projector functions. That the
matching of the LAPW method can be expressed by pro
jector functions has been observed earlier by Goedecker
and Maschke.P"

In the LAPW method the wave functions are expressed
by partial waves 14>1.1) and their energy derivatives I¢v) at
some energy tv within atom-centered muffin-tin spheres
OR and by plane waves in the interstitial region Oi:

(127)

B. Linear augmented-plane-wave method

The present method is in the tradition of exist
ing augmented-wave methods. Augmented-wave func
tions were originally invented by Slater." There, the
Lippmann-Schwinger equation for a muffin-tin type po
tential is solved by matching the energy-dependent par
tial solution of the Schrodinger equation inside and out
side the muffin-tin sphere. As this matching procedure is
computationally extremely demanding, Andersen intro
duced the linear methods.i' where the partial solutions
from within the muffin-tin sphere are linearized with

difference, however, is that the PAW method is an all
electron method and Vanderbilt's approach a pseudopo
tential method.

(i) The PAW method avoids "pseudization" steps
to which one resorts when using pseudopotential ap
proaches, be they norm-conserving pseudopotential ap
proaches or not. The PAW method, on the other hand,
works directly with the full-wave functions and poten
tials and includes the core states. This is a nontrivial
problem; the notion that the full-wave functions cannot
be treated in a reasonable way on a regular grid was the
reason to introduce augmented-wave and pseudopoten
tial methods. The PAW method follows here the tradi
tion of the augmented-wave methods, where the full-wave
function is decomposed into various parts, each of which
can be handled conveniently in its own representation.

(ii) The PAW method provides a prescription to go
back and forth between the PS wave functions and the
physical AE wave functions. The analogy between the
PAW method and the pseudopotential approach has been
exploited successfully by Van de Walle and myself1 2 to re
construct an approximate full-wave function from a pseu
dopotential calculation and obtain quantities that are not
directly accessible by the pseudopotential approach. The
PAW method is more rigorous than a mere reconstruc
tion of the wave functions because the full wave function
takes part in the screening process.

(iii) In the ultrasoft pseudopotentials the overlap oper
ator and the local charges have been introduced to restore
the scattering properties of the pseudopotential when the
norm-conservation condition is relaxed in order to obtain
smoother PS wave functions. In the PAW method, the
non-norm-conserving PS wave functions enter naturally
as in all other augmented-wave methods.

(iv) From the point of view of computational effort,
the PAW method and the ultrasoft pseudopotentials are
equivalent with respect to plane-wave convergence if a
similar construction of non-norm-conserving PS wave
functions is used. However, the PAW method is more
efficient because it treats the one-center expansions on
radial grids, which effectively eliminates the related com
putational cost, rather than in a plane-wave representa
tion. Furthermore, the plane-wave cutoff for the charge
density can be chosen substantially lower in the PAW
method because the augmentation density is not directly
added to the density grid. This cuts the computational
effort for the Fourier transforms substantially.
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two-dimensional muffin-tin surface, which excludes real
space summation to obtain the scalar products with the
PS wave function. However, the latter can be evaluated
in G space for any other representation of the PS wave
function in terms of analytical functions. There are ex
tensions of the LAPW method that use more than two
partial waves,72 but they will not be discussed here, as I
only wish to illustrate the principle. The computational
effort for this part of the augmentation is similar in the
LAPW and the PAW methods if such a projection-type
approach is used in the LAPW method.

In contrast to the PAW method, the LAPW method
requires the one-center expansion of the PS wave func
tion to be exactly identical to the PS wave function it
self, which is computationally demanding. In the PAW
method there is no need to make the one-center expan
sion of the PS wave function more accurate than the one
center of the AE wave function and both are therefore
obtained in a completely analogous way. In fact, this pro
cedure results in an extremely rapid convergence of the
partial-wave expansion, which is due to the error cancel
lations discussed earlier. The one-center expansions of
the PS wave function are obtained without extra effort
because their coefficients are identical to those obtained
previously with the AE wave function.

Another difference between the LAPW and the PAW
methods is the use of frozen partial waves imported from
an isolated atom as opposed to partial waves that ad
just to the actual potential. At first glance this appears
to be a disadvantage of the PAW method. However, if
we count the number of variational degrees of freedom,
we find that, given the same number of plane waves, the
PAW method has a more flexible basis set, even though
the partial-wave expansions often have fewer terms than
the LAPW method. Whereas the LAPW method has
complete flexibility to adjust to the spherical part of the
potential inside the muffin-tin spheres, the PAW method
lets the plane waves of the unaugmented part of the PS
wave function extend into the spheres and thus allows the
wave functions to adjust to both spherical and nonspher
ical potentials. This is the result of what is often called
"additive augmentation" and has been discussed in the
Sec. VII. In combination with a fictitious Lagrangian for
malism, the use of fixed partial waves has the important
advantage that the total energy is a unique function of
only the PS wave functions and the atomic positions.

1. The APW method of Soler and Williams

The APW method of Soler and Williams1S- 1 7 differs
from other implementations of the LAPW method in sev
eral ways. I will compare the main differences between
their APW method and the PAW method. Most of what
has already been said about the difference between the
PAW method and the LAPW method also applies here.

First, Soler's APW method employs an iterative min
imization of the total energy, which is similar in spirit
to the Car-Parrinello method. To my knowledge no
molecular-dynamics features have been implemented.
The reason has been attributedf' to the problem of "hid-

den" variables in the APW method, e.g., the shape of the
partial waves, that adjust to the actual spherical poten
tial. As the PAW method uses frozen partial waves, this
problem does not arise.

Second, in the Soler-Williams APW the linear approxi
mation has been abandoned in favor of so-called infinites
imal paneling. This means that every state has its own
<P, ¢ functions obtained from the spherical potential at the
energy of that state. As a result the scattering properties
are correct for all one-particle energies given a spherical
potential. The PAW method reproduces the scattering
properties correctly over the entire energy range only in
the ideal case of an infinite number of partial waves. In
this case the PAW wave functions are exact solutions for
the full nonspherical potential. In practice the wave func
tions of the PAW are accurate in an arbitrarily large, but
finite energy region.

Like previous implementations of the LMTO method,
the Soler-Williams APW employs the principle of addi
tive augmentation. In the PAW method the principles of
additive augmentation are applied even more rigorously.
Not only the .e convergence, but also the partial-wave
convergence for each angular momentum channel is ac
celerated using this idea.

2. Singh's projector-basis technique

Recently, Singh74 introduced an implementation of the
LAPW method (and the mixed-basis pseudopotential)
method that is substantially more efficient than previous
implementations. Instead of matching the partial waves
directly to the plane-wave part of the wave function, a
set of analytical functions is first fitted to the PS wave
function on the real-space grid points in a localized re
gion around each atom. Once an analytical expression
for the plane-wave part is given, the matching of partial
waves and the integrations over the muffin-tin sphere can
be evaluated quickly. The advantage of this approach
is that computational effort for the augmentation scales
quadratically [or N 2In(N)] with the number of atoms
N, compared to an N 3 scaling in a pure G space formu
lation. Another solution of the same problem has been
developed in the pseudopotential approach.75

There has been some confusion about the terms "pro
jector basis function" in Singh's paper and the "projector
functions" of the PAW method. The two refer to different
objects. Since the projector functions are used to repre
sent the PS wave function, the projector basis functions
of Singh's approach relate more closely to the PS partial
waves of the PAW method rather than to its projector
functions. However, also here are differences: The PS
partial waves of the PAW method are per construction
adapted to the PS potential, and the coefficients of the
partial wave expansion are obtained by a scalar prod
uct of my projector functions with the PS wave func
tion, whereas in Singh's approach these coefficients are
obtained by a least-squares-type fit to the plane-wave
part at the real-space grid points. The difference between
the two approaches is most apparent from the number of
projector functions and PS waves, which in PAW vary
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typically between four and fourteen per site, whereas in
Singh's approach several hundred functions are used.

Singh's approach can be applied equally to the
pseudopotential formalism and to all augmented-wave
schemes including the PAW method. When convergence
with the number of Singh's projector functions and plane
wave cutoff is obtained, it reproduces exactly the elec
tronic structure method to which it has been applied.

X. CONCLUSIONS
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APPENDIX A: RADIAL SCHRODINGER
EQUATION WITH A SEPARABLE POTENTIAL

In order to test the scattering properties it is necessary
to solve the radial Schrodinger equation using a separable
pseudopotential. An approach is sketched here briefly:

An ansatz for the solution is

(_~'J2 + V - f)Iq,)

+E IPi)(dHii + EdOii)(Pil~) = o. (AI)
i,i

An electronic structure method has been described
that works directly on the full valence and core wave
functions and allows highly accurate first-principles
molecular-dynamics simulation to be performed. It has
been demonstrated that the accuracy of the PAW method
matches that of other state-of-the-art electronic structure
methods based on the LDA and that high-quality first
principles molecular-dynamics simulations are possible
using this approach. To the best of my knowledge, this
method was used in the first molecular-dynamics simula
tion using an all-electron method.62 The method bridges
the gap between the existing augmented-wave methods
and the pseudopotential methods and underscores the re
lationship between these two approaches. Compared to
the existing approaches, the present method is expected
to be more efficient, given a similar level of optimization.
The method can be incorporated into existing pseudopo
tential codes with relatively minor additional effort.

with lu) and IWi) defined as

(_!V 2 + v - E)lu) = 0

and

(A2)

(A3)

(A4)

ACKNOWLEDGMENTS

I would like to express my gratitude to O. K. Anderson,
who taught me the basics that allowed me to develop
PAW. Furthermore, I am indebted to S. T. Pantelides

1 P. Hohenberg and W. Kohn, Phys. Rev. 136, B664 (1964).
2 W. Kohn and L.J. Sham, Phys. Rev. 140, Bl133 (1965).
3 O.K. Andersen, Phys. Rev. B 12, 3060 (1975).
4 J.C. Slater, Phys. Rev. 51,846 (1937).
5 P.M. Marcus, Int. J. Quantum. Chern. IS, 567 (1967).
6 J. Korringa, Physica 13, 392 (1947).
7 W. Kohn and N. Rostocker, Phys. Rev. 94, 111 (1954).
8 D.R. Hamann, M. Schluter, and C. Chiang, Phys. Rev.

Lett. 43, 1494 (1979).
9 D. Vanderbilt, Phys. Rev. B 41, 7892 (1985)

10 K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, Phys.
Rev. B 43, 6796 (1991).

11 R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
12 C.G. Van de Walle and P.E. Blochl, Phys. Rev. B 47, 4244

(1993).
13 P. Blaha, K. Schwarz, and P.H. Dederichs, Phys. Rev. B

37, 2792 (1988).
14 K. Schwarz and P. Blaha, Z. Naturforsch. A 47, 197 (1992).
15 J.M. Soler and A.R. Williams, Phys. Rev. B 40, 1560

(1989).

After inserting this ansatz into Eq. (AI) we obtain an
equation that determines the coefficients Ci as

Ci = - E [8ii + E(dHi k _ EdOik)(PkIWi )] -1

i,l k

X (dHi l - EdOj l) (Pllu) . (A5)

16 J.M. Soler and A.R. Williams, Phys. Rev. B 42, 9728
(1990).

17 J.M. Soler and A.R. Williams, Phys. Rev. B 47, 6784
(1993).

18 D. Singh, Phys. Rev. B 40, 5428 (1989).
19 T. Oguchi, in Interatomic Potential and Structural Stabil

ity, edited by K. Terakura and H. Akai (Springer, Berlin,
1993), p. 33.

20 A set of functions that is complete in a region can be used
to expand any function within that region.

21 P.E. Blochl, Phys. Rev. B 41, 5414 (1990).
22 R. Car (private communication).
23 S.F. Boys, Proc. R. Soc. London Sere A 200, 542 (1950).
24 S. Obara and A. Saika, J. Chern. Phys. 84, 3963 (1986).
25 V.R. Saunders, in Methods in Computational Molecular

Physics, edited by G.H.F. Diercksen and S. Wilson (Reidel,
Dordrecht, 1983), pp. 1-36.

26 K.H. Weyrich, Phys. Rev. B 37, 10269 (1988).
27 P.E. Blochl, Ph.D. thesis, University of Stuttgart, Ger

many, 1989.



so PROJECTOR AUGMENTED-WAVE METHOD 17979

28 P. Ehrenfest, Z. Phys. 45,455 (1927).
29 H. Hellmann, Einfuhrung in die Quantenchemie (Deuticke,

Leipzig, 1937).
30 R.P. Feynman, Phys. Rev. 56, 340 (1939).
31 D.G. Pettifor, Commun. Phys. 1, 141 (1979).
32 A.R. Mackintosh and O.K. Andersen, in Electrons at the

Fermi Surface, edited by M. Springford (Cambridge Uni
versity Press, Cambridge, England, 1980), p. 187.

33 V. Heine, Solid State Phys. 35, 1 (1980).
340.H. Nielsen and R.M. Martin, Phys. Rev. B 32, 1780

(1985).
35 P. Pulay, Mol. Phys. 17, 197 (1969).
36 J. Harris, R.O. Jones, and J. E. Muller, J. Chern. Phys.

75, 3904 (1981).
37 L. Verlet, Phys. Rev. 159, 98 (1967).
38 G. Pastore, E. Smargiassi, and F. Buda, Phys. Rev. A 44,

6334 (1991).
39 J.-P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, J. Com

put. Phys. 23, 327 (1977).
40 R. Car and M. Parrinello, in Simple Molecular Systems at

Very High Density, edited by A. Polian et ale (Plenum, New
York, 1989), p. 455.

41 K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Van
derbilt, Phys. Rev. B 47, 10142 (1993).

42 S. Nose, J. Chern. Phys. 81, 511 (1984).
43 P.E. Blochl and M. Parrinello, Phys. Rev. B 45, 9413

(1992).
44 M. Parrinello (private communication).
45 G. P. Kerker, J. Phys. C 13, 1189 (1980).
46 A.M. Rappe, K.M. Rabe, E. Kaxiras, and J.D. Joannopou

los, Phys. Rev. B 41, 1227 (1990).
47 J.S. Lin, A. Qteish, M.C. Payne, and V. Heine, Phys. Rev.

B 47, 4174 (1993).
48 N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993

(1991 ).
49 D.D. Koelling and B.N. Harmon, J. Phys. C 10, 3107

(1977).
50 G.B. Bachelet, D.R. Hamann, and M. Schluter, Phys. Rev.

B 26, 4199 (1982).
51 D.R. Hamann, Phys. Rev. B 40, 2980 (1989).
52 A right-hand eigenvalue is a value A that has a nontrivial

solution c, to L: j aijCj = CiA.

53 H.L. Skriver, in The LMTO Method, edited by M. Cardona,
P. Fulde, and H. J. Queisser, Springer Series in Solid State

Sciences Vol. 41 (Springer, Berlin, 1984).
54 A.D. Becke, J. Chern. Phys. 97, 9173 (1992).
55 P.A. Serena, A. Baratoff, and J.M. Soler, Phys. Rev. B 48,

2046 (1993).
56 R.M. Dickson and A. Becke, J. Chern. Phys. 99, 3898

(1993).
57 S. Dhar and N.R. Kestner, Phys. Rev. A 38, 1111 (1988).
58 J.L. Chen, C.S. Wang, K.A. Jackson, and M.R. Pederson,

Phys. Rev. B 44, 6558 (1991).
59 J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
60 D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566

(1980).
61 H. Chen, M. Krasowski, and G. Fitzgerald, J. Chem. Phys.

98, 8710 (1993).
62 P. Margl, P.E. Blochl, and K. Schwarz, in Computations

for the Nano Scale, edited by P.E. Blochl et al. (Kluwer,
Dordrecht, 1993), p. 153.

63 P. Margl, P.E. Blochl, and K. Schwarz, J. Chern. Phys.
100, 8194 (1994).

64 A.J. Fisher and P.E. Blochl, Phys. Rev. Lett. 70, 3263
(1993).

65 A.J. Fisher and P.E. Blochl, in Computations for the Nano
Scale (Ref. 62), p. 185.

66 R. Nesper, K. Vogel, and P.E. Blochl, Angew. Chem. Int.
Ed. Engl. 32, 701 (1993).

67 P. Carloni, P.E. Blochl, and M. Parrinello (unpublished).
68 The convergence of the binding energy of Fes has been stud

ied by comparing a plane-wave PAW calculation of Fe2+.
69 S. Goedecker and K. Maschke, Phys. Rev. B 42, 8858

(1990).
70 L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425

(1982).
71 Matrix elements of V 2(Jo can be resolved by performing

partial integration two times and by the application of
Gauss's theorem as (ILI(V 2 80)19LI) = 8L,Llr~(IL8r9L +
9L8r!L), where ro is the radius of the muffin-tin sphere.
! Land B;I L are the value and the derivative of the radial
part of \IL) at the muffin-tin radius.

72D.J. Singh, Phys. Rev. B 43, 6388 (1991).
73 J.M. Soler (private communication).
74D. Singh, Phys. Rev. B 46, 13065 (1992).
75R.D. King-Smith, M.e. Payne, and J.S. Lin, Phys. Rev. B

44, 13063 (1991).


