Physics 740: Spring 2006:
P740.10.tex
z: uniform flow, source/sink, dipole, For $\mathrm{D}=2$ problems it often occurs that a complex flow field can be built up from a set of rudimentary flows. The target here is the flow around a cylinder which is lifted by the Bernoulli force. Before we get to that here are some pieces. First recall notation and relationships

$$
\begin{align*}
\mathbf{v} & =(u, v, w)=(u, v, 0), \tag{1}\\
\mathbf{v} & =\nabla \phi, \tag{2}\\
\mathbf{v} & =\left(\frac{\partial \psi}{\partial y},-\frac{\partial \psi}{\partial x}\right), \tag{3}\\
\nabla^{2} \phi & =0 \tag{4}\\
\nabla^{2} \psi & =0 \tag{5}\\
F(z) & =\phi(x, y)+i \psi(x, y), \tag{6}
\end{align*}
$$

where ϕ is the velocity potential, ψ is the stream function and the boundary condition at fluid/solid interfaces is $\mathbf{n} \cdot \mathbf{v}=0$.

1. uniform flow:

$$
\begin{align*}
F(z) & =v_{0} z=v_{0} x+i v_{0} y \tag{7}\\
\phi & =v_{0} x \tag{8}\\
\psi & =v_{0} y \tag{9}\\
\mathbf{v} & =\left(v_{0}, 0\right) . \tag{10}
\end{align*}
$$

2. point source at the origin:

$$
\begin{align*}
F(z) & =v_{0} a \ln z=v_{0} a \ln r e^{i \theta}=v_{0} a \ln r+i v_{0} a \theta \tag{12}\\
\phi & =v_{0} a \ln r \tag{13}\\
\psi & =v_{0} a \theta \tag{14}\\
\mathbf{v} & =v_{0} \frac{a}{r} \mathbf{e}_{r} . \tag{15}
\end{align*}
$$

3. circulation at the origin:

$$
\begin{align*}
F(z) & =-i v_{0} a \ln z=-i v_{0} a \ln r e^{i \theta}=-i v_{0} a \ln r+v_{0} a \theta \tag{17}\\
\phi & =v_{0} a \theta \tag{18}\\
\psi & =-v_{0} a \ln r \tag{19}\\
\mathbf{v} & =v_{0} \frac{a}{r} \mathbf{e}_{\theta} . \tag{20}
\end{align*}
$$

4. dipole at the origin: this is the limit as $b \rightarrow 0$ of two point sources \pm at $z_{0}=(\pm b, 0)$,

$$
\begin{align*}
F(z) & =v_{0} a \ln (z+b)-v_{0} a \ln (z-b) \rightarrow 2 v_{0} a \frac{b}{z} \tag{22}\\
\phi & =2 v_{0} a b \frac{x}{x^{2}+y^{2}}, \tag{23}\\
\psi & =-2 v_{0} a b \frac{y}{x^{2}+y^{2}} . \tag{24}
\end{align*}
$$

The lines of constant stream function are circles centered on the y-axis

$$
\begin{equation*}
x^{2}+\left(y+\frac{v_{0} a b}{\psi}\right)^{2}=\left(\frac{v_{0} a b}{\psi}\right)^{2} . \tag{25}
\end{equation*}
$$

5. cylinder of radius b in a uniform flow: combine dipole and uniform flow of appropriate strength,

$$
\begin{align*}
F(z) & =2 v_{0} a \frac{b}{z}+v_{0} a M z \tag{26}\\
\phi & =v_{0} a\left(\frac{2 b}{r}+M r\right) \cos \theta \tag{27}\\
\psi & =v_{0} a\left(-\frac{2 b}{r}+M r\right) \sin \theta \tag{28}
\end{align*}
$$

Require $\psi=0$ at $r=b$, i.e., $M=2 / b$. Thus

$$
\begin{align*}
& \phi=v_{\infty} b\left(\frac{b}{r}+\frac{r}{b}\right) \cos \theta \tag{29}\\
& \psi=v_{\infty} b\left(-\frac{b}{r}+\frac{r}{b}\right) \sin \theta \tag{30}
\end{align*}
$$

where $v_{\infty} b=2 v_{0} a$. From Eq. (29) find

$$
\begin{align*}
& v_{r}=v_{\infty}\left(1-\frac{b^{2}}{r^{2}}\right) \cos \theta \asymp v_{\infty} \frac{x}{r} \tag{31}\\
& v_{\theta}=-v_{\infty}\left(1+\frac{b^{2}}{r^{2}}\right) \sin \theta \asymp-v_{\infty} \frac{y}{r} \tag{32}
\end{align*}
$$

FIG. 1: Stream lines around a cylinder of radius $1, a=b=1$.

To calculate the pressure along any stream line use the Bernoulli equation in the form

$$
\begin{equation*}
P_{0}+\frac{1}{2} \rho_{0} v_{\infty}^{2}=P+\frac{1}{2} \rho_{0} v^{2} \tag{33}
\end{equation*}
$$

where $P_{0}+\rho_{0} v_{\infty}^{2} / 2$ is appropriate for points on the streamline far from the cylinder. Then, $\delta P=P-P_{0}$ is given by

$$
\begin{equation*}
X=\frac{\delta P}{\frac{1}{2} \rho_{0} v_{\infty}^{2}}=1-\frac{v^{2}}{v_{\infty}^{2}} \tag{34}
\end{equation*}
$$

Along the $\psi=0$ streamline, $r=b, v_{\theta}=-2 v_{\infty} \sin \theta$ and

$$
\begin{equation*}
X=1-4 \sin ^{2} \theta \tag{35}
\end{equation*}
$$

The excess pressure is 1 at the stagnation points, $\theta=0, \pi$ and -3 at $\theta= \pm \pi / 2$. As X is symmetric in θ about $\theta=0$, while there is pressure variation around the cylinder, there is no net force on it.
6. cylinder of radius $b=a$ in a uniform flow with an added circulation about the origin

$$
\begin{align*}
F(z) & =v_{\infty} a\left(\frac{a}{z}+\frac{z}{a}\right)+i \frac{\Gamma a}{2 \pi} \ln \frac{z}{a} \tag{36}\\
\phi & =v_{\infty} a\left(\frac{a}{r}+\frac{r}{a}\right) \cos \theta-\frac{\Gamma a}{2 \pi} \theta \tag{37}\\
\psi & =v_{\infty} a\left(-\frac{a}{r}+\frac{r}{a}\right) \sin \theta+\frac{\Gamma a}{2 \pi} \ln \frac{r}{a} . \tag{38}
\end{align*}
$$

For the velocities find

$$
\begin{align*}
& v_{r}=v_{\infty}\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta \tag{39}\\
& v_{\theta}=-v_{\infty}\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta-\frac{\Gamma}{2 \pi} \frac{a}{r} \tag{40}
\end{align*}
$$

Note $v_{r}=0$ at $r=a$ and is unchanged from above. Scale the velocities by v_{∞}, define $\Lambda=\Gamma /\left(2 \pi v_{\infty}\right)$ and find

$$
\begin{align*}
\frac{v_{r}}{v_{\infty}} & =\left(1-\frac{a^{2}}{r^{2}}\right) \cos \theta \tag{41}\\
\frac{v_{\theta}}{v_{\infty}} & =-\left(1+\frac{a^{2}}{r^{2}}\right) \sin \theta-\Lambda \frac{a}{r} \tag{42}
\end{align*}
$$

Calculate the pressure as above. Along the $\psi=0$ streamline the symmetry of v_{θ}, $v(\theta)=v(-\theta)$, is broken by the circulation, Λ. [A visual manifestation of this is the

FIG. 2: Stream lines around cylinder for various values of the circulation.
change in the location of the stagnation points from $0, \pi$, e.g., Fig. 2.] Along the $\psi=0$ streamline

$$
\begin{equation*}
X=1-4 \sin ^{2} \theta-\Lambda^{2}-4 \Lambda \sin \theta \tag{43}
\end{equation*}
$$

The part of X that is symmetric in θ contributes nothing to the pressure difference between the top and bottom of the cylinder. It is the last term that counts. The net force, in the y-direction, due to the pressure is given by

$$
\begin{equation*}
F_{y}=\int_{0}^{2 \pi} d \theta(-\sin \theta)(-4 \Lambda \sin \theta)=4 \pi \Lambda \tag{44}
\end{equation*}
$$

Because v_{θ} is symmetric about $\theta=\pi / 2$ there is no net force in the x -direction,

$$
\begin{equation*}
F_{x}=0 . \tag{45}
\end{equation*}
$$

