
THE DL POLY 2 USER MANUAL

W. Smith, T.R. Forester, I.T. Todorov and M. Leslie

CCLRC Daresbury Laboratory
Daresbury, Warrington WA4 4AD

Cheshire, UK

Version 2.16, March 2006

c©CCLRC i

ABOUT DL POLY 2

DL POLY 2 is a parallel molecular dynamics simulation package developed at Dares-
bury Laboratory by W. Smith and T.R. Forester under the auspices of the Engineering
and Physical Sciences Research Council (EPSRC) for the EPSRC’s Collaborative Com-
putational Project for the Computer Simulation of Condensed Phases (CCP5) and the
Computational Science and Engineering Department at Daresbury Laboratory. The pack-
age is the property of the Council for the Central Laboratory of the Research Councils of
the United Kingdom.

DL POLY 2 is issued free under licence to academic institutions pursuing scientific
research of a non-commercial nature. Commercial organisations may be permitted a licence
to use the package after negotiation with the owners. Daresbury Laboratory is the sole
centre for distribution of the package. It should not be redistributed to third parties without
consent of the owners.

The purpose of the DL POLY 2 package is to provide software for academic research
that is inexpensive, accessible and free of commercial considerations. Users have direct
access to source code for modification and inspection. In the spirit of the enterprise, con-
tributions in the form of working code are welcome, provided the code is compatible with
DL POLY 2 in regard to its interfaces and programming style and it is adequately docu-
mented.

c©CCLRC ii

DISCLAIMER

Neither the CCLRC, EPSRC, CCP5 nor any of the authors of the DL POLY 2 package
or their derivatives guarantee that the packages are free from error. Neither do they accept
responsibility for any loss or damage that results from its use.

c©CCLRC iii

DL POLY 2 ACKNOWLEDGEMENTS

DL POLY 2 was developed under the auspices of the Central Laboratory of the Research
Councils, the Engineering and Physical Sciences Research Council, and the former Science
and Engineering Research Council, under grants from the Computational Science Initiative
and the Science and Materials Computing Committee.

Advice, assistance and encouragement in the development of DL POLY 2 has been given
by many people. We gratefully acknowledge the comments, feedback and bug reports from
the CCP5 community in the United Kingdom and throughout the world.

c©CCLRC iv

Manual Notation

In the DL POLY Manual and Reference Manual specific fonts are used to convey specific
meanings:

1. directories - itallic font indicate unix file directories

2. routines - small capitals indicate subroutines, functions and programs.

3. macros - sloped text indicates a macro (file of unix commands)

4. directive - bold text indicates directives or keywords

5. variables - typewrite text indicates named variables and parameters

6. FILE - large capitals indicate filenames.

Contents

Title Page a
About DL POLY 2 . i
Disclaimer . ii
Acknowledgements . iii
Manual Notation . iv

Contents v

List of Tables ix

List of Figures x

1 Introduction 1
1.1 The DL POLY Package . 3
1.2 Functionality . 3

1.2.1 Molecular Systems . 3
1.2.2 The DL POLY 2 Force Field . 4
1.2.3 Boundary Conditions . 5
1.2.4 The Java Graphical User Interface 5
1.2.5 Algorithms . 5

1.3 Programming Style . 6
1.3.1 Programming Language . 6
1.3.2 Memory Management . 6
1.3.3 Target Computers . 6
1.3.4 Version Control System (CVS) . 6
1.3.5 Required Program Libraries . 7
1.3.6 Internal Documentation . 7
1.3.7 Subroutine/Function Calling Sequences 7
1.3.8 FORTRAN Parameters . 8
1.3.9 Arithmetic Precision . 8
1.3.10 Units . 8
1.3.11 Error Messages . 9

1.4 The DL POLY 2 Directory Structure . 9
1.4.1 The srcf90 Sub-directory . 9

v

c©CCLRC vi

1.4.2 The utility Sub-directory . 9
1.4.3 The data Sub-directory . 10
1.4.4 The bench Sub-directory . 10
1.4.5 The execute Sub-directory . 10
1.4.6 The build Sub-directory . 10
1.4.7 The public Sub-directory . 10
1.4.8 The java Sub-directory . 10

1.5 Obtaining the Source Code . 11
1.6 Other Information . 12

2 DL POLY 2 Force Fields and Algorithms 14
2.1 The DL POLY 2 Force Field . 16
2.2 The Intramolecular Potential Functions . 18

2.2.1 Bond Potentials . 18
2.2.2 Distance Restraints . 20
2.2.3 Valence Angle Potentials . 20
2.2.4 Angular Restraints . 23
2.2.5 Dihedral Angle Potentials . 23
2.2.6 Improper Dihedral Angle Potentials 26
2.2.7 Inversion Angle Potentials . 27
2.2.8 Tethering Forces . 30
2.2.9 Frozen Atoms . 31

2.3 The Intermolecular Potential Functions . 31
2.3.1 Short Ranged (van der Waals) Potentials 31
2.3.2 Three Body Potentials . 34
2.3.3 The Tersoff Covalent Potential . 35
2.3.4 Four Body Potentials . 37
2.3.5 Metal Potentials . 38
2.3.6 External Fields . 40

2.4 Long Ranged Electrostatic (Coulombic) Potentials 41
2.4.1 Atomistic and Charge Group Implementation 41
2.4.2 Direct Coulomb Sum . 42
2.4.3 Truncated and Shifted Coulomb Sum 43
2.4.4 Coulomb Sum with Distance Dependent Dielectric 44
2.4.5 Ewald Sum . 45
2.4.6 Smoothed Particle Mesh Ewald . 47
2.4.7 Hautman Klein Ewald (HKE) . 49
2.4.8 Reaction Field . 51
2.4.9 Dynamical Shell Model . 52
2.4.10 Relaxed Shell Model . 54

2.5 Integration algorithms . 54
2.5.1 The Verlet Algorithms . 54
2.5.2 Bond Constraints . 57

c©CCLRC vii

2.5.3 Potential of Mean Force (PMF) Constraints and the Evaluation of
Free Energy . 59

2.5.4 Thermostats . 60
2.5.5 Gaussian Constraints . 62
2.5.6 Barostats . 64
2.5.7 Rigid Bodies and Rotational Integration Algorithms 68
2.5.8 The DL POLY 2 Multiple Timestep Algorithm 76

2.6 DL POLY Parallelisation . 78
2.6.1 The Replicated Data Strategy . 78
2.6.2 Distributing the Intramolecular Bonded Terms 79
2.6.3 Distributing the Nonbonded Terms 80
2.6.4 Modifications for the Ewald Sum . 81
2.6.5 Modifications for SPME . 82
2.6.6 Three and Four Body Forces . 82
2.6.7 Metal Potentials . 82
2.6.8 Summing the Atomic Forces . 83
2.6.9 The SHAKE, RATTLE and Parallel QSHAKE Algorithms 83

3 DL POLY 2 Construction and Execution 85
3.1 Constructing DL POLY 2 : an Overview . 87

3.1.1 Constructing the Standard Version 87
3.1.2 Constructing Nonstandard Versions 88

3.2 Compiling and Running DL POLY 2 . 91
3.2.1 Compiling the Source Code . 91
3.2.2 Running DL POLY 2 . 94
3.2.3 Restarting DL POLY 2 . 95

3.3 A Guide to Preparing Input Files . 96
3.3.1 Inorganic Materials . 96
3.3.2 Macromolecules . 97
3.3.3 Adding Solvent to a Structure . 98
3.3.4 Analysing Results . 98
3.3.5 Choosing Ewald Sum Variables . 98

3.4 DL POLY 2 Error Processing . 101
3.4.1 The DL POLY 2 Internal Error Facility 101

4 DL POLY 2 Data Files 103
4.1 The INPUT files . 105

4.1.1 The CONTROL File . 105
4.1.2 The CONFIG File . 114
4.1.3 The FIELD File . 117
4.1.4 The REVOLD File . 134
4.1.5 The TABLE File . 135

4.2 The OUTPUT Files . 138
4.2.1 The HISTORY File . 138

c©CCLRC viii

4.2.2 The OUTPUT File . 141
4.2.3 The REVCON File . 144
4.2.4 The REVIVE File . 144
4.2.5 The RDFDAT File . 144
4.2.6 The ZDNDAT File . 145
4.2.7 The STATIS File . 145

5 DL POLY 2 Examples 148
5.1 DL POLY Examples . 150

5.1.1 Test Cases . 150
5.1.2 Benchmark Cases . 153

6 DL POLY 2 Utilities 155
6.1 Miscellaneous Utilities . 156

6.1.1 Useful Macros . 156

Bibliography 159

Appendices 162

A The DL POLY 2 Makefile 162

B Periodic Boundary Conditions in DL POLY 167

C DL POLY Error Messages and User Action 173

D Subroutine Locations 243

E Called Subroutines 252

F Calling Subroutines 269

Index 286

List of Tables

4.1 Internal Restart Key . 112
4.2 Internal Ensemble Key . 112
4.3 Internal Trajectory File Key . 112
4.4 Non-bonded force key . 113
4.5 CONFIG file key (record 2) . 116
4.6 Periodic boundary key (record 2) . 116
4.7 Chemical bond potentials . 122
4.8 Valence Angle potentials . 124
4.9 Dihedral Angle Potentials . 126
4.10 Inversion Angle Potentials . 127
4.11 Tethering potentials . 127
4.12 Definition of pair potential functions and variables 129
4.13 Three-body potentials . 130
4.14 Four-body Potentials . 131
4.15 Definition of metal potential functions and variables 132
4.16 Tersoff Potential . 133
4.17 External fields . 134

ix

List of Figures

4.1 DL POLY 2 input (left) and output (right) files. Note: files marked with an
asterisk are non-mandatory. 105

x

Chapter 1

Introduction

1

c©CCLRC 2

Scope of Chapter

This chapter describes the concept, design and directory structure of DL POLY 2 and how
to obtain a copy of the source code.

c©CCLRC 3

1.1 The DL POLY Package

DL POLY 2 [1] is a package of subroutines, programs and data files, designed to facilitate
molecular dynamics simulations of macromolecules, polymers, ionic systems, solutions and
other molecular systems on a distributed memory parallel computer. The package was
written to support the UK project CCP5 by Bill Smith and Tim Forester [2] under grants
from the Engineering and Physical Sciences Research Council and is the property of the
Council for the Central Laboratory of the Research Councils.

Two forms of DL POLY exist. DL POLY 2 is the earlier version and is based on a
replicated data parallelism. It is suitable for simulations of up to 30,000 atoms on up to 100
processors. DL POLY 3 is a domain decomposition version, written by I.T. Todorov and W.
Smith, and is designed for systems beyond the range of DL POLY 2 - up to 10,000,000 atoms
(and beyond) and 1000 processors. This document is entirely concerned with DL POLY 2.

Though DL POLY 2 is designed for distributed memory parallel machines, but we have
taken care to ensure that it can, with minimum modification, be run on the popular work-
stations. Scaling up a simulation from a small workstation to a massively parallel machine
is therefore a useful feature of the package.

Users are reminded that we are interested in hearing what other features could be use-
fully incorporated. We also request that our users respect the copyright of the DL POLY 2
source and not alter any authorship or copyright notices within. We require that all users
of the package register with us, not least because we need to keep everyone abreast of new
developments and discovered bugs. We have developed a licence for this purpose, which we
hope will ward off litigation (from both sides), without denying access to genuine scientific
users.

Further information about the DL POLY package can be obtained from our website :

http : //www.cse.clrc.ac.uk/msi/software/DL POLY

1.2 Functionality

The following is a list of the features DL POLY 2 . It is worth reminding users that
DL POLY 2 represents a package rather than a single program, so users may consider
piecing together their own program with the desired functionality. We will however, supply
a consolidated program in the distributed source.

1.2.1 Molecular Systems

DL POLY 2 will simulate the following molecular species:

1. Simple atomic systems and mixtures e.g. Ne, Ar, Kr, etc.

2. Simple unpolarisable point ions e.g. NaCl, KCl, etc.

3. Polarisable point ions and molecules e.g. MgO, H2O etc.D

4. Simple rigid molecules e.g. CCl4, SF6, Benzene, etc.

http://www.cse.clrc.ac.uk/msi/software/DL_POLY

c©CCLRC 4

5. Rigid molecular ions with point charges e.g. KNO3, (NH4)2SO4, etc.

6. Polymers with rigid bonds e.g. CnH2n+2

7. Polymers with rigid bonds and point charges e.g. proteins

8. Macromolecules and biological systems

9. Molecules with flexible bonds

10. Silicate glasses and zeolites

11. Simple metals and alloyse.g. Al, Ni, Cu etc.

12. Covalent systems e.g. C, Si, Ge, SiC, SiGe etc.

1.2.2 The DL POLY 2 Force Field

The DL POLY 2 force field includes the following features:

1. All common forms of non-bonded atom-atom potential;

2. Atom-atom (site-site) Coulombic potentials;

3. Valence angle potentials;

4. Dihedral angle potentials;

5. Inversion potentials;

6. Improper dihedral angle potentials;

7. 3-body valence angle and hydrogen bond potentials;

8. 4-body inversion potentials;

9. Sutton-Chen density dependent potentials (for metals) [3].

10. The Tersoff density dependent potential for covalent systems [4].

The parameters describing many of these these potentials may be obtained, for example,
from the GROMOS [5], Dreiding [6] or AMBER [7] forcefield, which share functional forms.
It is relatively easy to adapt DL POLY 2 to user specific force fields. Note that DL POLY 2
does not have its own ‘official’ force field.

c©CCLRC 5

1.2.3 Boundary Conditions

DL POLY 2 will accommodate the following boundary conditions:

1. None e.g. isolated polymer in space.

2. Cubic periodic boundaries.

3. Orthorhombic periodic boundaries.

4. Parallelepiped periodic boundaries.

5. Truncated octahedral periodic boundaries.

6. Rhombic dodecahedral periodic boundaries.

7. Slab (x,y periodic, z nonperiodic).

8. Hexagonal prism periodic boundaries.

These are describe in detail in Appendix B.

1.2.4 The Java Graphical User Interface

DL POLY 2 has a Graphical User Interface (GUI) written specifically for the package in the
Java programming language from Sun microsystems. The Java programming environment
is free and it is particularly suitable for building graphical user interfaces. An atractive
aspect of java is the portability of the compiled GUI, which may be run without recompiling
on any Java supported machine. The GUI is an integral component of the DL POLY 2
package and is available on exactly the same terms. (See [8].)

1.2.5 Algorithms

1.2.5.1 Parallel Algorithms

DL POLY 2 exclusively employs the Replicated Data parallelisation strategy [9, 10] (see
section 2.6.1).

1.2.5.2 Molecular Dynamics Algorithms

The DL POLY 2 MD algorithms are optionally available in the form of the Verlet Leapfrog
or the Velocity Verlet integration algorithms [11].

In the leapfrog scheme a parallel version of the SHAKE algorithm [12, 10] is used for
bond constraints and a similar adaptation of the RATTLE algorithm [13] is implmented in
the velocity Verlet scheme.

Rigid body rotational motion is handled under the leapfrog scheme with Fincham’s
implicit quaternion algorithm (FIQA) [14]. For velocity Verlet integration of rigid bodies
DL POLY 2 uses the ‘NOSQUISH’ algorithm of Miller et al [15].

c©CCLRC 6

Rigid molecular species linked by rigid bonds are handled with an algorithm of our own
devising, called the QSHAKE algorithm [16] which has been adapted for both leapfrog and
velocity Verlet schemes.

NVE, NVT, NPT and NσT ensembles are available, with a selection of thermostats and
barostats. The velocity Verlet versions are based on the reversible integrators of Martyna
et al [17].

The NVT algorithms in DL POLY 2 are those of Evans [18], Berendsen [19]; and Hoover
[20]. The NPT algorithms are those of Berendsen [19] and Hoover [20] and the NσT
algorithms are those of Berendsen [19] and Hoover [20].

The full range of MD algorithms available in DL POLY 2 is described in Section 2.5.

1.3 Programming Style

The programming style of DL POLY 2 is intended to be as uniform as possible. The
following stylistic rules apply throughout. Potential contributors of code are requested to
note the stylistic convention.

1.3.1 Programming Language

DL POLY 2 is written exclusively in FORTRAN 90. Use is made of F90 Modules. Explicit
type declaration is used throughout.

1.3.2 Memory Management

In DL POLY 2 , the major array dimensions are calculated at the start of execution and
the associated arrays created through the dynamic array allocation features of FORTRAN
90.

1.3.3 Target Computers

DL POLY 2 is intended for distributed memory parallel computers. However, versions of
the program for serial computers are easily produced. To facilitate this all machine specific
calls are located in dedicated FORTRAN routines, to permit substitution by appropriate
alternatives.

DL POLY 2 will run on a wide selection of computers. This includes most single pro-
cessor workstations for which it requires a FORTRAN 90 compiler and (preferably) a UNIX
environment. It has also been compiled for a Windows PC using the Compaq Visual FOR-
TRAN compiler. The Message Passing Interface (MPI) software is essential for parallel
execution.

1.3.4 Version Control System (CVS)

DL POLY 2 was developed with the aid of the CVS version control system. We strongly
recommend that users of DL POLY 2 adopt this system for local development of the

c©CCLRC 7

DL POLY 2 code, particularly where several users access the same source code. For infor-
mation on CVS please contact:

info− cvs− request@gnu.org

or visit the website:

http : //www.cse.clrc.ac.uk/msi/software/DL POLY

1.3.5 Required Program Libraries

DL POLY 2 is, for the most part, self contained and does not require access to additional
program libraries. The exception is the MPI software library required for parallel execution.

Users requiring the Smoothed Particle Mesh Ewald (SPME) method may prefer to use
a proprietary 3D FFT other than the one (sc dlpfft3) supplied with the package for optimal
performance. There are comments in the source code which provide guidance for applica-
tions on Cray and IBM computers, which use the routines ccfft3d and dcft3 respectively.
Similarly users will find comments for the public domain FFT routine fftwnd fft.

1.3.6 Internal Documentation

All subroutines are supplied with a header block of FORTRAN COMMENT records giving:

1. The name of the author and/or modifying author

2. The version number or date of production

3. A brief description of the function of the subroutine

4. A copyright statement

5. A CVS revision number and associated data.

Elsewhere FORTRAN COMMENT cards are used liberally.

1.3.7 Subroutine/Function Calling Sequences

The variables in the subroutine arguments are specified in the order:

1. logical and logical arrays

2. character and character arrays

3. integer

4. real and complex

5. integer arrays

6. real and complex arrays

This is admittedly arbitrary, but it really does help with error detection.

http://www.cse.clrc.ac.uk/msi/software/DL_POLY

c©CCLRC 8

1.3.8 FORTRAN Parameters

All global parameters defined by the FORTRAN parameter statements are specified in the
module: setup module. All parameters specified in setup module are described by one
or more comment cards.

1.3.9 Arithmetic Precision

All real variables and parameters are specified in 64-bit precision (i.e real*8).

1.3.10 Units

Internally all DL POLY 2 subroutines and functions assume the use of the following defined
molecular units:

1. The unit of time (to) is 1× 10−12 seconds (i.e. picoseconds).

2. The unit of length (`o) is 1× 10−10 metres (i.e. Ångstroms).

3. The unit of mass (mo) is 1.6605402× 10−27 kilograms (i.e. atomic mass units).

4. The unit of charge (qo) is 1.60217733× 10−19 coulombs (i.e. unit of proton charge).

5. The unit of energy (Eo = mo(`o/to)2) is 1.6605402× 10−23 Joules (10 J mol−1).

6. The unit of pressure (Po = Eo`
−3
o) is 1.6605402× 107 Pascal (163.882576 atm).

7. Planck’s constant (h̄) which is 6.350780668× Eoto.

In addition the following conversion factors are used:
The coulombic conversion factor (γo) is:

γo =
1
Eo

[
q2
o

4πεo`o

]
= 138935.4835

such that:
UMKS = EoγoUInternal

Where U represents the configuration energy.
The Boltzmann factor (kB) is 0.831451115 EoK

−1, such that:

T = Ekin/kB

represents the conversion from kinetic energy (in internal units) to temperature (in Kelvin).
Note: In the DL POLY 2 CONTROL and OUTPUT files, the pressure is given in

units of kilo-atmospheres (katm) at all times. The unit of energy is either DL POLY 2
units specified above, or in other units specified by the user at run time. The default is
DL POLY units.

c©CCLRC 9

1.3.11 Error Messages

All errors detected by DL POLY 2 during run time initiate a call to the subroutine error,
which prints an error message in the standard output file and terminates the program. All
terminations of the program are global (i.e. every node of the parallel computer will be
informed of the termination condition and stop executing.)

In addition to terminal error messages, DL POLY 2 will sometimes print warning mes-
sages. These indicate that the code has detected something that is unusual or inconsistent.
The detection is non-fatal, but the user should make sure that the warning does represent
a harmless condition.

1.4 The DL POLY 2 Directory Structure

The entire DL POLY 2 package is stored in a Unix directory structure. The topmost
directory is named dl poly 2.nn, where nn is a generation number. Beneath this directory
are several sub-directories:

sub-directory contents

srcf90 primary subroutines for the DL POLY 2 package
utility subroutines, programs and example data for all utilities
data example input and output files for DL POLY 2
bench large test cases suitable for benchmarking
execute the DL POLY 2 run-time directory
build makefiles to assemble and compile DL POLY 2 programs
public directory of routines donated by DL POLY 2 users
java directory of Java and FORTRAN routines for the Java GUI

A more detailed description of each sub-directory follows.

1.4.1 The srcf90 Sub-directory

In this sub-directory all the essential source code for DL POLY 2 , excluding the utility
software. In keeping with the ‘package’ concept of DL POLY 2 , it does not contain any
complete programs; these are assembled at compile time using an appropriate makefile.

1.4.2 The utility Sub-directory

This sub-directory stores all the utility subroutines, functions and programs in DL POLY 2
, together with examples of data. The various routines in this sub-directory are documented
in chapter 6 of this manual. Users who devise their own utilities are advised to store them
in the utility sub-directory.

c©CCLRC 10

1.4.3 The data Sub-directory

This sub-directory contains examples of input and output files for testing the released
version of DL POLY 2 . The examples of input data are copied into the execute sub-
directory when a program is being tested. The test cases are documented in chapter 5.

1.4.4 The bench Sub-directory

This directory contains examples of input and output data for DL POLY 2 that are suitable
for benchmarking DL POLY 2 on large scale computers. These are described in chapter 5.

1.4.5 The execute Sub-directory

In the supplied version of DL POLY 2 , this sub-directory contains only a few macros for
copying and storing data from and to the data sub-directory and for submitting programs
for execution. (These are decribed in section 6.1.1.) However when a DL POLY 2 program
is assembled using its makefile, it will be placed in this sub-directory and will subsequently
be executed from here. The output from the job will also appear here, so users will find
it convenient to use this sub-directory if they wish to use DL POLY 2 as intended. (The
experienced user is not absolutely required to use DL POLY 2 this way however.)

1.4.6 The build Sub-directory

This sub-directory contains the standard makefiles for the creation (i.e. compilation and
linking) of the DL POLY 2 simulation programs. The makefiles supplied select the ap-
propriate subroutines from the srcf90 sub-directory and deposit the executable program in
the execute directory. The user is advised to copy the appropriate makefile into the srcf90
directory, in case any modifications are required. The copy in the build sub-directory will
then serve as a backup.

1.4.7 The public Sub-directory

This sub-directory contains assorted routines donated by DL POLY users. Potential users
should note that these routines are unsupported and come without any guarantee
or liability whatsoever. They should be regarded as potentially useful resources to be
hacked into shape as needed by the user. This directory is available from the CCP5 Program
Library by direct FTP(see below).

1.4.8 The java Sub-directory

The DL POLY 2 Java Graphical User Interface (GUI) is based on the Java language de-
veloped by Sun. The Java source code for this GUI is to be found in this sub-directory,
along with a few FORTRAN sub-sub-directories which contain some additional capabilities
accessible from the GUI. These sources are complete and sufficient to create a working GUI,

c©CCLRC 11

provided the user has installed the Java Development Kit, (1.4 or above) which is available
free from Sun at

http : //java.sun.com.

The GUI, once compiled, may be executed on any machine where Java is installed, though
note the FORTRAN components will need to be recompiled if the machine is changed. (See
[8].)

1.5 Obtaining the Source Code

To obtain a copy of DL POLY 2 it is first necessary to obtain a licence from Daresbury
Laboratory. A copy of the licence form may be obtained by selecting the licence link on
the DL POLY website:

http : //www.cse.clrc.ac.uk/msi/software/DL POLY

and downloading and printing the file. Alternatively FTP may be used to copy the
postscript file from the CCP5 Program Library at Daresbury Laboratory in the follow-
ing manner:

1. move to the desired directory on YOUR machine,

2. type: ftp ftp.dl.ac.uk

3. enter userid: anonymous

4. enter passwd: (your e-mail address)

5. change to the DL POLY directory: cd ccp5/DL POLY/DL POLY 2

6. change to the DOCUMENTS directory: cd DOCUMENTS

7. type: binary

8. type: get LICENCE.ps.Z or get GROUP.LICENCE.ps.Z

9. type: quit

The licence file will need to be uncompressed (using the unix uncompress command) before
printing. Note that there are two versions of the licence available; one for single academic
users (with perhaps one or two postgraduate students); and one for academic groups (with
perhaps several research staff, including postdoctoral and permanent staff.) Choose the
one most suitable for you. The licences are package licences which allow you access to all
the DL POLY software.

Once you have obtained the licence form you should sign it and return it to the following
address.

http://www.cse.clrc.ac.uk/msi/software/DL_POLY

c©CCLRC 12

Dr. W. Smith
DL_POLY Program Library
Computational Science and Engineering Department
CCLRC Daresbury Laboratory
Daresbury
Warrington WA4 4AD
England

Alteratively you may Fax the licence to +44 (0)1925 603634, or e-mail a scanned copy
as a PDF file to w.smith@dl.ac.uk.

When the signed licence has been received, information on downloading the DL POLY 2
source code will be sent by e-mail, so please supply your e-mail address.

The bench and public subdirectories of DL POLY 2 are not issued in the standard pack-
age, but can be downloaded directly from the FTP site (in the ccp5/DL POLY/DL POLY 2
directory) as described above.

The DL POLY 2 User Manual is freely available via the website or ftp, in the same
manner as the licence form.

1.6 Other Information

The DL POLY website:

http : //www.cse.clrc.ac.uk/msi/software/DL POLY

provides additional information in the form of

1. Access to all documentation (including licences);

2. Frequently asked questions;

3. Bug reports;

4. Access to the DL POLY online forum.

Daresbury Laboratory also maintains two DL POLY 2 associated electronic mailing lists:

1. dl poly news - to which all registered DL POLY 2 users are automatically subscribed.
It is via this list that error reports and announcements of new versions are made. If
you are a DL POLY 2 user, but not on this list you may request to be added. Contact
w.smith@dl.ac.uk.

2. dl poly mail - is a group list which is available to DL POLY 2 users by request. Its
purpose is to allow DL POLY 2 users to broadcast information and queries to each
other. To subscribe to this list send a mail message to majordomo@dl.ac.uk with the
one-line message:

subscribe dl poly mail

Subsequent messages may be broadcast by e-mailing to the address: dl poly mail@dl.ac.uk.
Note that this is a vetted list, so electronic spam is not possible.

http://www.cse.clrc.ac.uk/msi/software/DL_POLY

c©CCLRC 13

The DL POLY Forum is a web based centre for all DL POLY users to exchange comments
and queries. You may access the forum through the DL POLY website. A registration (and
vetting) process is required before you can use the forum, but it is open, in principle, to
everyone.

Chapter 2

DL POLY 2 Force Fields and
Algorithms

14

c©CCLRC 15

Scope of Chapter

This chapter describes the interaction potentials and simulation algorithms coded into
DL POLY 2 .

c©CCLRC 16

2.1 The DL POLY 2 Force Field

The force field is the set of functions needed to define the interactions in a molecular system.
These may have a wide variety of analytical forms, with some basis in chemical physics,
which must be parameterised to give the correct energy and forces. A huge variety of
forms is possible and for this reason the DL POLY 2 force field is designed to be adaptable.
While it is not supplied with its own force field parameters, many of the functions familiar
to GROMOS, [5] Dreiding [6], AMBER [7] and OPLS [21] users have been coded in the
package, as well as less familiar forms. In addition DL POLY 2 retains the possibility of
the user defining additional potentials.

In DL POLY 2 the total configuration energy of a molecular system may be written as:

U(r1, r2, . . . , rN) =
Nbond∑

ibond=1

Ubond(ibond, ra, rb)

+
Nangle∑

iangle=1

Uangle(iangle, ra, rb, rc)

+
Ndihed∑

idihed=1

Udihed(idihed, ra, rb, rc, rd)

+
Ninv∑

iinv=1

Uinv(iinv, ra, rb, rc, rd)

+
N−1∑

i=1

N∑

j>i

Upair(i, j, |ri − rj |)

+
N−2∑

i=1

N−1∑

j>i

N∑

k>j

U3 body(i, j, k, ri, rj , rk)

+
N−1∑

i=1

N∑

j>i

UTersoff (i, j, ri, rj , R
N)

+
N−3∑

i=1

N−2∑

j>i

N−1∑

k>j

N∑

n>k

U4 body(i, j, k, n, ri, rj , rk, rn)

+
N∑

i=1

UMetal(i, ri, R
N)

+
N∑

i=1

Uextn(i, ri, vi) (2.1)

where Ubond, Uangle, Udihed, Uinv, Upair, U3 body, UTersoff and U4 body are empirical in-
teraction functions representing chemical bonds, valence angles, dihedral angles, inversion
angles, pair-body, three-body, Tersoff (many-body covalent), and four-body forces respec-
tively. The first four are regarded by DL POLY 2 as intra-molecular interactions and the

c©CCLRC 17

next five as inter-molecular interactions. The term Umetal is a density dependent (and
therefore many-body) metal potential . The final term Uextn represents an external field
potential.

The position vectors ra, rb, rc and rd refer to the positions of the atoms specifically
involved in a given interaction. (Almost universally, it is the differences in position that
determine the interaction.) A special vector RN is used to indicate a many-body depen-
dence. The numbers Nbond, Nangle, Ndihed and Ninv refer to the total numbers of these
respective interactions present in the simulated system, and the indices ibond, iangle, iinv

and idihed uniquely specify an individual interaction of each type. It is important to note
that there is no global specification of the intramolecular interactions in DL POLY 2 - all
bonds, valence angles and dihedrals must be individually cited.

The indices i, j (and k, n) appearing in the pair-body (and three or four-body) terms
indicate the atoms involved in the interaction. There is normally a very large number
of these and they are therefore specified according to atom types rather than indices. In
DL POLY 2 it is assumed that the pair-body terms arise from van der Waals and/or elec-
trostatic (Coulombic) forces. The former are regarded as short ranged interactions and the
latter as long ranged. Long range forces require special techniques to evaluate accurately
(see section 2.4.) In DL POLY 2 the three-body terms are restricted to valence angle and
H-bond forms. The nonbonded, three-body, four-body and Tersoff , interactions are glob-
ally specified according to the types of atoms involved. DL POLY 2 also has the ability to
handle metals via density dependent functions (see below). Though essentially many-body
potentials their particular form means they are handled in a manner very similar to pair
potentials.

In DL POLY 2 the intramolecular bonded terms are handled using bookkeeping arrays,
which specify the atoms involved in a particular interaction and point to the appropriate
arrays of parameters that define the potential. The calculation of bonded forces therefore
follows the simple scheme:

1. Every atom in the simulated system is assigned a unique index number from 1 to N ;

2. Every intramolecular bonded term Utype in the system has a unique index number
itype: from 1 to Ntype where type represents a bond, angle or dihedral.

3. A pointer array keytype(ntype, itype) carries the indices of the specific atoms involved
in the potential term labelled itype. The dimension ntype will be 2, 3 or 4, if the term
represents a bond, valence angle, dihedral/inversion.

4. The array keytype(ntype, itype) is used to identify the atoms in a bonded term and the
appropriate form of interaction and thus to calculate the energy and forces.

DL POLY 2 calculates the nonbonded pair interactions using a Verlet neighbour list
[11] which is reconstructed at intervals during the simulation. This list records the indices
of all ‘secondary’ atoms within a certain radius of each ‘primary’ atom; the radius being
the cut-off radius (rcut) normally applied to the nonbonded potential function, plus an
additional increment (∆rcut). The neighbour list removes the need to scan over all atoms

c©CCLRC 18

in the simulation at every timestep. The larger radius (rcut + ∆rcut) means the same list
can be used for several timesteps without requiring an update. The frequency at which the
list must be updated depends on the thickness of the region ∆rcut. DL POLY 2 has two
methods for constructing the neighbour list: the first is based on the Brode-Ahlrichs scheme
[22] and is used when rcut is large in comparison with the simulation cell; the second uses
the link-cell algorithm [23] when rcut is relatively small. The potential energy and forces
arising from the nonbonded interactions are calculated using interpolation tables.

A complication in the construction of the Verlet neighbour list for macromolecules is
the concept of excluded atoms, which arises from the need to exclude certain atom pairs
from the overall list. Which atom pairs need to be excluded is dependent on the precise
nature of the force field model, but as a minimum atom pairs linked via extensible bonds
or constraints and atoms (grouped in pairs) linked via valence angles are probable candi-
dates. The assumption behind this requirement is that atoms that are formally bonded in
a chemical sense, should not participate in nonbonded interactions. (However this is not
a universal requirement of all force fields.) The same considerations are needed in dealing
with charged excluded atoms. DL POLY 2 has several subroutines available for construct-
ing the Verlet neighbour list, while taking care of the excluded atoms (see chapter 3 for
further information.)

Three- and four-body nonbonded forces are assumed to be short ranged and therefore
calculated using the link-cell algorithm [23]. They ignore the possibility of there being any
excluded interactions involving the atoms concerned.

Throughout this section the description of the force field assumes the simulated system
is described as an assembly of atoms. This is for convenience only and readers should
understand that DL POLY 2 does recognise molecular entities, defined either through con-
straint bonds or rigid bodies. In the case of rigid bodies, the atomic forces are resolved into
molecular forces and torques. These matters are discussed in greater detail later in sections
2.5.2.1 and 2.5.7).

2.2 The Intramolecular Potential Functions

In this section we catalogue and describe the forms of potential function available in
DL POLY 2 The key words required to select potential forms are given in brackets ()
before each definition. The derivations of the atomic forces, virial and stress tensor are also
outlined.

2.2.1 Bond Potentials

i j

r
ij

c©CCLRC 19

The interatomic bond vector.

The bond potentials describe explicit bonds between specified atoms. They are functions
of the interatomic distance only. The potential functions available are as follows.

1. Harmonic bond: (harm)

U(rij) =
1
2
k(rij − ro)2; (2.2)

2. Morse potential: (mors)

U(rij) = Eo[{1− exp(−k(rij − ro))}2 − 1]; (2.3)

3. 12-6 potential bond: (12-6)

U(rij) =

(
A

r12
ij

)
−

(
B

r6
ij

)
; (2.4)

4. Restrained harmonic: (rhrm)

U(rij) =
1
2
k(rij − ro)2 |rij − ro| ≤ rc; (2.5)

U(rij) =
1
2
kr2

c + krc(|rij − ro| − rc) |rij − ro| > rc; (2.6)

5. Quartic potential: (quar)

U(rij) =
k

2
(rij − ro)2 +

k′

3
(rij − ro)3 +

k′′

4
(rij − ro)4. (2.7)

6. Buckingham potential: (buck)

U(rij) = A exp
(
−rij

ρ

)
− C

r6
ij

; (2.8)

In these formulae rij is the distance between atoms labelled i and j:

rij = |rj − ri|, (2.9)

where r` is the position vector of an atom labelled `. 1

The force on the atom j arising from a bond potential is obtained using the general
formula:

f
j

= − 1
rij

[
∂

∂rij
U(rij)

]
rij , (2.10)

The force f
i
acting on atom i is the negative of this.

1Note: some DL POLY 2 routines may use the convention that rij = ri − rj .

c©CCLRC 20

The contribution to be added to the atomic virial is given by

W = −rij · f j
, (2.11)

with only one such contribution from each bond.
The contribution to be added to the atomic stress tensor is given by

σαβ = rα
ijf

β
j , (2.12)

where α and β indicate the x, y, z components. The atomic stress tensor derived in this
way is symmetric.

In DL POLY 2 bond forces are handled by the routine bndfrc.

2.2.2 Distance Restraints

In DL POLY 2 distance restraints, in which the separation between two atoms, is main-
tained around some preset value r0 is handled as a special case of bond potentials. As a
consequence distance restraints may be applied only between atoms in the same molecule.
Unlike with application of the “pure” bond potentials, the electrostatic and van der Waals
interactions between the pair of atoms are still evaluated when distance restraints are ap-
plied. All the potential forms of the previous section are avaliable as distance restraints,
although they have different key words:

1. Harmonic potential: (-hrm)

2. Morse potential: (-mrs)

3. 12-6 potential bond: (-126)

4. Restrained harmonic: (-rhm)

5. Quartic potential: (-qur)

6. Buckingham potential: (-bck)

In DL POLY 2 distance restraints are handled by the routine bndfrc.

2.2.3 Valence Angle Potentials

i

j k

rikrij θ

c©CCLRC 21

The valence angle and associated vectors

The valence angle potentials describe the bond bending terms between the specified
atoms. They should not be confused with the three body potentials described later, which
are defined by atom types rather than indices.

1. Harmonic: (harm)

U(θjik) =
k

2
(θjik − θ0)2; (2.13)

2. Quartic: (quar)

U(θjik) =
k

2
(θjik − θ0)2 +

k′

3
(θjik − θ0)3 +

k′′

4
(θjik − θ0)4; (2.14)

3. Truncated harmonic: (thrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(r8

ij + r8
ik)/ρ8]; (2.15)

4. Screened harmonic: (shrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]; (2.16)

5. Screened Vessal[24]: (bvs1)

U(θjik) =
k

8(θjik − π)2

{[
(θ0 − π)2 − (θjik − π)2

]2
}

exp[−(rij/ρ1 + rik/ρ2)]; (2.17)

6. Truncated Vessal[25]: (bvs2)

U(θjik) = k[θa
jik(θjik − θ0)2(θjik + θ0 − 2π)2 − a

2
πa−1

(θjik − θ0)2(π − θ0)3] exp[−(r8
ij + r8

ik)/ρ8]. (2.18)

7. Harmonic cosine: (hcos)

U(θjik) =
k

2
(cos(θjik)− cos(θ0))2 (2.19)

8. Cosine: (cos)
U(θjik) = A[1 + cos(mθjik − δ)] (2.20)

9. MM3 stretch-bend potential (mmsb)

U(θjik) = A(θjik − θ0)(rij − ro
ij)(rik − ro

ik) (2.21)

c©CCLRC 22

In these formulae θjik is the angle between bond vectors rij and rik:

θjik = cos−1

{
rij · rik

rijrik

}
(2.22)

In DL POLY 2 the most general form for the valence angle potentials can be written
as:

U(θjik, rij , rik) = A(θjik)S(rij)S(rik) (2.23)

where A(θ) is a purely angular function and S(r) is a screening or truncation function. All
the function arguments are scalars. With this reduction the force on an atom derived from
the valence angle potential is given by:

fα
` = − ∂

∂rα
`

U(θjik, rij , rik), (2.24)

with atomic label ` being one of i, j, k and α indicating the x, y, z component. The derivative
is

− ∂

∂rα
`

U(θjik, rij , rik) = −S(rij)S(rik)
∂

∂rα
`

A(θjik)

−A(θjik)S(rik)(δ`j − δ`i)
rα
ij

rij

∂

∂rij
S(rij)

−A(θjik)S(rij)(δ`k − δ`i)
rα
ik

rik

∂

∂rik
S(rik), (2.25)

with δab = 1 if a = b and δab = 0 if a 6= b. In the absence of screening terms S(r), this
formula reduces to:

− ∂

∂rα
`

U(θjik, rij , rik) = − ∂

∂rα
`

A(θjik) (2.26)

The derivative of the angular function is

− ∂

∂rα
`

A(θjik) =

{
1

sin(θjik)

}
∂

∂θjik
A(θjik)

∂

∂rα
`

{
rij · rik

rijrik

}
, (2.27)

with

∂

∂rα
`

{
rij · rik

rijrik

}
= (δ`j − δ`i)

rα
ik

rijrik
+ (δ`k − δ`i)

rα
ij

rijrik
−

cos(θjik)

{
(δ`j − δ`i)

rα
ij

r2
ij

+ (δ`k − δ`i)
rα
ik

r2
ik

}
(2.28)

The atomic forces are then completely specified by the derivatives of the particular functions
A(θ) and S(r).

The contribution to be added to the atomic virial is given by

W = −(rij · f j
+ rik · fk

) (2.29)

c©CCLRC 23

It is worth noting that in the absence of screening terms S(r), the virial is zero [26].
The contribution to be added to the atomic stress tensor is given by

σαβ = rα
ijf

β
j + rα

ikf
β
k (2.30)

and the stress tensor is symmetric.
In DL POLY 2 valence forces are handled by the routine angfrc.

2.2.4 Angular Restraints

In DL POLY 2 angle restraints, in which the angle subtended by a triplet of atoms, is
maintained around some preset value θ0 is handled as a special case of angle potentials. As
a consequence angle restraints may be applied only between atoms in the same molecule.
Unlike with application of the “pure” angle potentials, the electrostatic and van der Waals
interactions between the pair of atoms are still evaluated when distance restraints are
applied. All the potential forms of the previous section are avaliable as angular restraints,
although they have different key words:

1. Harmonic: (-hrm)

2. Quartic: (-qur)

3. Truncated harmonic: (-thm)

4. Screened harmonic: (-shm)

5. Screened Vessal[24]: (-bv1)

6. Truncated Vessal[25]: (-bv2)

7. Harmonic cosine: (-hcs)

8. Cosine : (-cos)

9. MM3 stretch-bend: (-msb)

In DL POLY 2 angular restraints are handled by the routine angfrc.

2.2.5 Dihedral Angle Potentials

j

rjk

rkn

r ij

i

k

n

Φ

c©CCLRC 24

The dihedral angle and associated vectors

The dihedral angle potentials describe the interaction arising from torsional forces in
molecules. (They are sometimes referred to as torsion potentials.) They require the spec-
ification of four atomic positions. The potential functions available in DL POLY 2 are as
follows.

1. Cosine potential: (cos)

U(φijkn) = A [1 + cos(mφijkn − δ)] (2.31)

2. Harmonic: (harm)

U(φijkn) =
1
2
k(φijkn − φ0)2 (2.32)

3. Harmonic cosine: (hcos)

U(φijkn) =
k

2
(cos(φijkn)− cos(φ0))2 (2.33)

4. Triple cosine: (cos3)

U(φ) =
1
2
A1(1 + cos(φ)) +

1
2
A2(1− cos(2φ)) +

1
2
A3(1 + cos(3φ)) (2.34)

5. Ryckaert-Bellemans hydrocarbon potential: (ryck)

U(φijkn) = A(a0 +
5∑

i=1

(aicos
i(φ)) (2.35)

6. Ryckaert-Bellemans fluorinated potential: (rbf)

U(φijkn) = B(b0 +
5∑

i=1

(bicos
i(φ)) (2.36)

7. OPLS angle potential

U(φijkn) = a0 + 0.5 ∗ (a1(1 + cos(φ)) + a2(1− cos(2φ)) + a3(1 + cos(3φ))) (2.37)

In these formulae φijkn is the dihedral angle defined by

φijkn = cos−1{B(rij , rjk, rkn)}, (2.38)

with

B(rij , rjk, rkn) =

{
(rij × rjk) · (rjk × rkn)
|rij × rjk||rjk × rkn|

}
. (2.39)

c©CCLRC 25

With this definition, the sign of the dihedral angle is positive if the vector product (rij ×
rjk) × (rjk × rkn) is in the same direction as the bond vector rjk and negative if in the
opposite direction.

The force on an atom arising from the dihedral potential is given by

fα
` = − ∂

∂rα
`

U(φijkn), (2.40)

with ` being one of i, j, k, n and α one of x, y, z. This may be expanded into

− ∂

∂rα
`

U(φijkn) =

{
1

sin(φijkn)

}
∂

∂φijkn
U(φijkn)

∂

∂rα
`

B(rij , rjk, rkn). (2.41)

The derivative of the function B(rij , rjk, rkn) is

∂

∂rα
`

B(rij , rjk, rkn) =
1

|rij × rjk||rjk × rkn|
∂

∂rα
`

{(rij × rjk) · (rjk × rkn)} (2.42)

− cos(φijkn)
2

{
1

|rij × rjk|2
∂

∂rα
`

|rij × rjk|2 +
1

|rjk × rkn|2
∂

∂rα
`

|rjk × rkn|2
}

,

with

∂

∂rα
`

{(rij × rjk) · (rjk × rkn)} = rα
ij([rjkrjk]α(δ`k − δ`n) + [rjkrkn]α(δ`k − δ`j)) +

rα
jk([rijrjk]α(δ`n − δ`k) + [rjkrkn]α(δ`j − δ`i)) +

rα
kn([rijrjk]α(δ`k − δ`j) + [rjkrjk]α(δ`i − δ`j)) +

2rα
jk[rijrkn]α(δ`j − δ`k), (2.43)

∂

∂rα
`

|rij × rjk|2 = 2rα
ij([rjkrjk]α(δ`j − δ`i) + [rijrjk]α(δ`j − δ`k)) +

2rα
jk([rijrij]α(δ`k − δ`j) + [rijrjk]α(δ`i − δ`j)), (2.44)

∂

∂rα
`

|rjk × rkn|2 = 2rα
kn([rjkrjk]α(δ`n − δ`k) + [rjkrkn]α(δ`j − δ`k)) +

2rα
jk([rknrkn]α(δ`k − δ`j) + [rjkrkn]α(δ`k − δ`n)). (2.45)

Where we have used the the following definition:

[a b]α =
∑

β

(1− δαβ)aβbβ. (2.46)

c©CCLRC 26

Formally, the contribution to be added to the atomic virial is given by

W = −
4∑

i=1

ri · f i
(2.47)

However it is possible to show (by tedious algebra using the above formulae, or more
elegantly by thermodynamic arguments [26],) that the dihedral makes no contribution to
the atomic virial.

The contribution to be added to the atomic stress tensor is given by

σαβ = rα
ijp

β
i + rα

jkp
β
jk + rα

knpβ
n (2.48)

−cos(φijkn)
2

{
rα
ijg

β
i + rα

jkg
β
k + rα

jkh
β
j + rα

knhβ
n

}
,

with

pα
i = (rα

jk[rjkrkn]α − rα
kn[rjkrjk]α)/(|rij × rjk||rjk × rkn|) (2.49)

pα
n = (rα

jk[rijrjk]α − rα
ij [rjkrjk]α)/(|rij × rjk||rjk × rkn|) (2.50)

pα
jk = (rα

ij [rjkrkn]α + rα
kn[rijrjk]α − 2rα

jk[rijrkn]α)/(|rij × rjk||rjk × rkn|) (2.51)

gα
i = 2(rα

ij [rjkrjk]α − rα
jk[rijrjk]α)/|rij × rjk|2 (2.52)

gα
k = 2(rα

jk[rijrij]α − rα
ij [rijrjk]α)/|rij × rjk|2 (2.53)

hα
j = 2(rα

jk[rknrkn]α − rα
kn[rjkrkn]α)/|rjk × rkn|2 (2.54)

hα
n = 2(rα

kn[rknrkn]α − rα
jk[rjkrkn]α)/|rjk × rkn|2 (2.55)

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and
the matrix is symmetric.

Lastly, it should be noted that the above description does not take into account the
possible inclusion of distance-dependent 1-4 interactions, as permitted by some force fields.
Such interactions are permissible in DL POLY 2 and are described in the section on pair
potentials below. DL POLY 2 also permits scaling of the 1-4 interactions by a numerical
factor. 1-4 interactions do, of course, contribute to the atomic virial.

In DL POLY 2 dihedral forces are handled by the routine dihfrc.

2.2.6 Improper Dihedral Angle Potentials

Improper dihedrals are used to restrict the geometry of molecules and as such need not
have a simple relation to conventional chemical bonding. DL POLY 2 makes no distinction
between dihedral angle functions and improper dihedrals (both are calculated by the same
subroutines) and all the comments made in the preceeding section apply.

An important example of the use of the improper dihedral is to conserve the structure
of chiral centres in molecules modelled by united-atom centres. For example α-amino acids
such as alanine (CH3CH(NH2)COOH), in which it is common to represent the CH3 and
CH groups as single centres. Conservation of the chirality of the α carbon is achieved
by defining a harmonic improper dihedral angle potential with an equilibrium angle of

c©CCLRC 27

35.264o. The angle is defined by vectors r12, r23 and r34, where the atoms 1,2,3 and 4 are
shown in the following figure. The figure defines the D and L enantiomers consistent with
the international (IUPAC) convention. When defining the dihedral, the atom indices are
entered in DL POLY 2 in the order 1-2-3-4.

1

2

3

4

C

N

H

α

β
D

1

2

3

4

C

N

H

α

β
L

L = α - N - C - β
1 2 3 4

D = α - C - N - β
1 2 3 4

The L and D enantiomers and defining vectors

In DL POLY 2 improper dihedral forces are handled by the routine dihfrc.

2.2.7 Inversion Angle Potentials

φ

i

j

n

k

The inversion angle and associated vectors

The inversion angle potentials describe the interaction arising from a particular ge-
ometry of three atoms around a central atom. The best known example of this is the

c©CCLRC 28

arrangement of hydrogen atoms around nitrogen in ammonia to form a trigonal pyramid.
The hydrogens can ‘flip’ like an inverting umbrella to an alternative structure, which in
this case is identical, but in principle causes a change in chirality. The force restraining the
ammonia to one structure can be described as an inversion potential (though it is usually
augmented by valence angle potentials also). The inversion angle is defined in the figure
above - note that the inversion angle potential is a sum of the three possible in-
version angle terms. It resembles a dihedral potential in that it requires the specification
of four atomic positions.

The potential functions available in DL POLY 2 are as follows.

1. Harmonic: (harm)

U(φijkn) =
1
2
k(φijkn − φ0)2 (2.56)

2. Harmonic cosine: (hcos)

U(φijkn) =
k

2
(cos(φijkn)− cos(φ0))2 (2.57)

3. Planar potential: (plan)

U(φijkn) = A [1− cos(φijkn)] (2.58)

In these formulae φijkn is the inversion angle defined by

φijkn = cos−1

{
rij · wkn

rijwkn

}
, (2.59)

with
wkn = (rij · ûkn)ûkn + (rij · v̂kn)v̂kn (2.60)

and the unit vectors

ûkn = (r̂ik + r̂in)/|r̂ik + r̂in|
v̂kn = (r̂ik − r̂in)/|r̂ik − r̂in|. (2.61)

As usual, rij = rj − ri etc. and the hat r̂ indicates a unit vector in the direction of r. The
total inversion potential requires the calculation of three such angles, the formula being
derived from the above using the cyclic permutation of the indices j → k → n → j etc.

Equivalently, the angle φijkn may be written as

φijkn = cos−1

{
[(rij · ûkn)2 + (rij · v̂kn)2]1/2

rij

}
(2.62)

Formally, the force on an atom arising from the inversion potential is given by

fα
` = − ∂

∂rα
`

U(φijkn), (2.63)

c©CCLRC 29

with ` being one of i, j, k, n and α one of x, y, z. This may be expanded into

− ∂

∂rα
`

U(φijkn) =

{
1

sin(φijkn)

}
∂

∂φijkn
U(φijkn)×

∂

∂rα
`

{
[(rij · ûkn)2 + (rij · v̂kn)2]1/2

rij

}
. (2.64)

Following through the (extremely tedious!) differentiation gives the result:

fα
` =

{
1

sin(φijkn)

}
∂

∂φijkn
U(φijkn)× (2.65)

{
−(δ`j − δ`i)

cos(φijkn)
r2
ij

rα
ij +

1
rijwkn

[
(δ`j − δ`i){(rij · ûkn)ûα

kn + (rij · v̂kn)v̂α
kn}

+(δ`k − δ`i)
rij · ûkn

uknrik

{
rα
ij − (rij · ûkn)ûα

kn − (rij · rik − (rij · ûkn)(rik · ûkn))
rα
ik

r2
ik

}

+(δ`k − δ`i)
rij · v̂kn

vknrik

{
rα
ij − (rij · v̂kn)v̂α

kn − (rij · rik − (rij · v̂kn)(rik · v̂kn))
rα
ik

r2
ik

}

+(δ`n − δ`i)
rij · ûkn

uknrin

{
rα
ij − (rij · ûkn)ûα

kn − (rij · rin − (rij · ûkn)(rin · ûkn))
rα
in

r2
in

}

+(δ`n − δ`i)
rij · v̂kn

vknrin

{
rα
ij − (rij · v̂kn)v̂α

kn − (rij · rin − (rij · v̂kn)(rin · v̂kn))
rα
in

r2
in

}]}

This general formula applies to all atoms ` = i, j, k, n. It must be remembered however, that
these formulae apply to just one of the three contributing terms (i.e. one angle φ) of the
full inversion potential: specifically the inversion angle pertaining to the out-of-plane vector
rij . The contributions arising from the other vectors rik and rin are obtained by the cyclic
permutation of the indices in the manner described above. All these force contributions
must be added to the final atomic forces.

Formally, the contribution to be added to the atomic virial is given by

W = −
4∑

i=1

ri · f i
(2.66)

However it is possible to show by thermodynamic arguments (cf [26],) or simply from
the fact that the sum of forces on atoms j,k and n is equal and opposite to the force on
atom i, that the inversion potential makes no contribution to the atomic virial.

If the force components fα
` for atoms ` = i, j, k, n are calculated using the above formu-

lae, it is easily seen that the contribution to be added to the atomic stress tensor is given
by

σαβ = rα
ijf

β
j + rα

ikf
β
k + rα

infβ
n (2.67)

The sum of the diagonal elements of the stress tensor is zero (since the virial is zero) and
the matrix is symmetric.

In DL POLY 2 inversion forces are handled by the routine invfrc.

c©CCLRC 30

2.2.8 Tethering Forces

DL POLY 2 also allows atomic sites to be tethered to a fixed point in space, r0 taken as their
position at the beginning of the simulation. This is also known as position restraining. The
specification, which comes as part of the molecular description, requires a tether potential
type and the associated interaction parameters.

Note, firstly, that application of tethering potentials means that momentum will no
longer be a conserved quantity of the simulation. Secondly, in constant pressure simulations,
where the MD cell changes size or shape, the reference position is scaled with the cell vectors.

The potential functions available in DL POLY 2 are as follows, in each case ri0 is the
distance of the atom from its position at t = 0:

1. harmonic potential: (harm)

U(ri0) =
1
2
k(ri0)2; (2.68)

2. restrained harmonic :(rhrm)

U(ri0) =
1
2
k(ri0)2 ri0 ≤ rc; (2.69)

U(ri0) =
1
2
kr2

c + krc(ri0 − rc) ri0 > rc; (2.70)

3. Quartic potential: (quar)

U(ri0) =
k

2
(ri0)2 +

k′

3
(ri0)3 +

k′′

4
(ri0)4. (2.71)

The force on the atom i arising from a tether potential is obtained using the general
formula:

f
i
= − 1

ri0

[
∂

∂ri0
U(ri0)

]
ri0, (2.72)

The contribution to be added to the atomic virial is given by

W = ri0 · f i
, (2.73)

The contribution to be added to the atomic stress tensor is given by

σαβ = −rα
i0f

β
i , (2.74)

where α and β indicate the x, y, z components. The atomic stress tensor derived in this
way is symmetric.

In DL POLY 2 bond forces are handled by the routine tethfrc.

c©CCLRC 31

2.2.9 Frozen Atoms

DL POLY 2 also allows atoms to be completely immobilised (i.e. “frozen” at a fixed point
in the MD cell). This is achieved by setting all forces and velocities associated with that
atom to zero during each MD timestep. Frozen atoms are signalled by assigning an atom a
non-zero value for the freeze parameter in the FIELD file. DL POLY 2 does not calculate
contributions to the virial or the stress tensor arising from the constraints required to freeze
atomic positions. In DL POLY 2 the frozen atom option cannot be used for sites in a rigid
body. As with the tethering potential, the reference position is scaled with the cell vectors
in constant pressure simulations.

In DL POLY 2 the frozen atom option is handled by the subroutine freeze.

2.3 The Intermolecular Potential Functions

In this section we outline the pair-body, three-body and four-body potential functions
available in DL POLY 2 . An important distinction between these and intramolecular
(bond) forces in DL POLY 2 is that they are specified by atom types rather than atom
indices.

2.3.1 Short Ranged (van der Waals) Potentials

The short ranged pair forces available in DL POLY 2 are as follows.

1. 12 - 6 potential: (12-6)

U(rij) =

(
A

r12
ij

)
−

(
B

r6
ij

)
; (2.75)

2. Lennard-Jones: (lj)

U(rij) = 4ε




(
σ

rij

)12

−
(

σ

rij

)6

 ; (2.76)

3. n - m potential [27]: (nm)

U(rij) =
Eo

(n−m)

[
m

(
ro

rij

)n

− n

(
ro

rij

)m]
; (2.77)

4. Buckingham potential: (buck)

U(rij) = A exp
(
−rij

ρ

)
− C

r6
ij

; (2.78)

5. Born-Huggins-Meyer potential: (bhm)

U(rij) = A exp[B(σ − rij)]− C

r6
ij

− D

r8
ij

; (2.79)

c©CCLRC 32

6. Hydrogen-bond (12 - 10) potential: (hbnd)

U(rij) =

(
A

r12
ij

)
−

(
B

r10
ij

)
; (2.80)

7. Shifted force n - m potential [27]: (snm)

U(rij) =
αEo

(n−m)

[
mβn

{(
ro

rij

)n

−
(

1
γ

)n
}
− nβm

{(
ro

rij

)m

−
(

1
γ

)m
}]

+
nmαEo

(n−m)

(
rij − γro

γro

) {(
β

γ

)n

−
(

β

γ

)m}
(2.81)

with

γ =
rcut

ro
(2.82)

β = γ

(
γm+1 − 1
γn+1 − 1

) 1
n−m

(2.83)

α =
(n−m)

[nβm(1 + (m/γ −m− 1)/γm)−mβn(1 + (n/γ − n− 1)/γn)]
(2.84)

This peculiar form has the advantage over the standard shifted n-m potential in that
both Eo and r0 (well depth and location of minimum) retain their original values after
the shifting process.

8. Morse potential: (mors)

U(rij) = Eo[{1− exp(−k(rij − ro))}2 − 1]; (2.85)

9. Tabulation: (tab). The potential is defined numerically only.

The parameters defining these potentials are supplied to DL POLY 2 at run time (see
the description of the FIELD file in section 4.1.3). Each atom type in the system is specified
by a unique eight-character label defined by the user. The pair potential is then defined
internally by the combination of two atom labels.

As well as the numerical parameters defining the potentials, DL POLY 2 must also
be provided with a cutoff radius rcut, which sets a range limit on the computation of the
interaction. Together with the parameters, the cutoff is used by the subroutine forgen
(or forgen rsq) to construct an interpolation array vvv for the potential function over
the range 0 to rcut. A second array ggg is also calculated, which is related to the potential
via the formula:

G(rij) = −rij
∂

∂rij
U(rij), (2.86)

and is used in the calculation of the forces. Both arrays are tabulated in units of energy.
The use of interpolation arrays, rather than the explicit formulae, makes the routines for

c©CCLRC 33

calculating the potential energy and atomic forces very general, and enables the use of
user defined pair potential functions. DL POLY 2 also allows the user to read in the
interpolation arrays directly from a file (see the description of the TABLE file (section
4.1.5). This is particularly useful if the pair potential function has no simple analytical
description (e.g. spline potentials).

The force on an atom j derived from one of these potentials is formally calculated with
the standard formula:

f
j

= − 1
rij

[
∂

∂rij
U(rij)

]
rij , (2.87)

where rij = rj − ri. The force on atom i is the negative of this.
The contribution to be added to the atomic virial (for each pair interaction) is

W = −rij · f j
. (2.88)

The contribution to be added to the atomic stress tensor is given by

σαβ = rα
ijf

β
j , (2.89)

where α and β indicate the x, y, z components. The atomic stress tensor derived from the
pair forces is symmetric.

Since the calculation of pair potentials assumes a spherical cutoff (rcut) it is necessary to
apply a long range correction to the system potential energy and virial. Explicit formulae
are needed for each case and are derived as follows. For two atom types a and b, the
correction for the potential energy is calculated via the integral

Uab
corr = 2π

NaNb

V

∫ ∞

rcut

gab(r)Uab(r)r2dr (2.90)

where Na, Nb are the numbers of atoms of types a and b, V is the system volume and gab(r)
and Uab(r) are the appropriate pair correlation function and pair potential respectively. It
is usual to assume gab(r) = 1 for r > rcut. DL POLY 2 sometimes makes the additional
assumption that the repulsive part of the short ranged potential is negligible beyond rcut.

The correction for the system virial is

Wab
corr = −2π

NaNb

V

∫ ∞

rcut

gab(r)
∂

∂r
Uab(r)r3dr, (2.91)

where the same approximations are applied. Note that these formulae are based on the
assumption that the system is reasonably isotropic beyond the cutoff.

In DL POLY 2 the short ranged forces are calculated by one of the routines srfrce,
srfrce rsq, and srfrceneu. The long range corrections are calculated by routine lr-
correct. The calculation makes use of the Verlet neighbour list described above.

c©CCLRC 34

2.3.2 Three Body Potentials

The three-body potentials in DL POLY 2 are mostly valence angle forms. (They are pri-
marily included to permit simulation of amorphous materials e.g. silicate glasses.) However,
these have been extended to include the Dreiding [6] hydrogen bond. The potential forms
available are as follows.

1. Truncated harmonic: (thrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(r8

ij + r8
ik)/ρ8]; (2.92)

2. Screened Harmonic: (shrm)

U(θjik) =
k

2
(θjik − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]; (2.93)

3. Screened Vessal[24]: (bvs1)

U(θjik) =
k

8(θjik − π)2

{[
(θ0 − π)2 − (θjik − π)2

]2
}

exp[−(rij/ρ1 + rik/ρ2)]; (2.94)

4. Truncated Vessal[25]: (bvs2)

U(θjik) = k[θa
jik(θjik − θ0)2(θjik + θ0 − 2π)2 − a

2
πa−1

(θjik − θ0)2(π − θ0)3] exp[−(r8
ij + r8

ik)/ρ8]. (2.95)

5. Dreiding hydrogen bond [6]: (hbnd

U(θjik) = Dhbcos
4(θjik)[5(Rhb/rjk)12 − 6(Rhb/rjk)10] (2.96)

Note that for the hydrogen bond, the hydrogen atom must be the central atom. Several
of these functions are identical to those appearing in the intra-molecular valenceangle de-
scriptions above. There are significant differences in implementation however, arising from
the fact that the three-body potentials are regarded as inter-molecular. Firstly, the atoms
involved are defined by atom types, not specific indices. Secondly, there are no excluded
atoms arising from the three body terms. (The inclusion of pair potentials may in fact be
essential to maintain the structure of the system.)

The three body potentials are very short ranged, typically of order 3 Å. This property,
plus the fact that three body potentials scale as N3, where N is the number of particles,
makes it essential that these terms are calculated by the link-cell method [28].

The calculation of the forces, virial and stress tensor as described in the section valence
angle potentials above.

DL POLY 2 applies no long range corrections to the three body potentials. The three
body forces are calculated by the routine thbfrc.

c©CCLRC 35

2.3.3 The Tersoff Covalent Potential

The Tersoff potential [4] is a special example of a density dependent potential, which has
been designed to reproduce the properties of covalent bonding in systems containing carbon,
silicon, germanium etc and alloys of these elements. A special feature of the potential is
that it allows bond breaking and associated changes in bond hybridisation. The potential
has 11 atomic and 2 bi-atomic parameters. The energy is modelled as a sum of pair-like
interactions where, however, the coefficient of the attractive term in the pairlike potential
(which plays the role of a bond order) depends on the local environment giving a many-body
potential.

The form of the Tersoff potential is: (ters)

Uij = fC(rij) [fR(rij)− γij fA(rij)], (2.97)

where
fR(rij) = Aij exp(−aij rij) , fA(rij) = Bij exp(−bij rij) (2.98)

fC(rij) =





1 : rij < Rij
1
2 + 1

2 cos[π (rij −Rij)/(rij −Rij)] : Rij < rij < Sij

0 : rij > Sij

(2.99)

γij = χij (1 + βi
ηi Lηi

ij)
−1/2ηi , Lij =

∑

k 6=i,j

fC(rik) ωik g(θijk)

g(θijk) = 1 + c2
i /d2

i − c2
i /[d2

i + (hi − cos θijk)2] (2.100)

with further mixed parameters defined as

aij = (ai + aj)/2 , bij = (bi + bj)/2

Aij = (AiAj)1/2 , Bij = (BiBj)1/2 (2.101)

Rij = (RiRj)1/2 , Sij = (SiSj)1/2 .

Here i, j and k label the atoms in the system, rij is the length of the ij bond, and θijk is
the bond angle between bonds ij and ik. Single subscripted parameters (11), such as ai

and ηi, depend only on the type of atom.
The chemistry between different atom types is encapsulated in the two sets of bi-atomic

parameters χij and ωij :

χii = 1 , χij = χji

ωii = 1 , ωij = ωji , (2.102)

which define only one independent parameter for each pair of atom types. The χ parameter
is used to strengthen or weaken the heteropolar bonds, relative to the value obtained by
simple interpolation. The ω parameter is used to permit greater flexibility when dealing
with more drastically different types of atoms.

c©CCLRC 36

The force on an atom ` derived from this potential is formally calculated with the
formula:

fα
` = − ∂

∂rα
`

Etersoff =
1
2

∑

i6=j

− ∂

∂rα
`

Uij , (2.103)

with atomic label ` being one of i, j, k and α indicating the x, y, z component. The derivative
in the above formula expands into

− ∂Uij

∂rα
`

= − ∂

∂rα
`

fC(rij)fR(rij) + γij
∂

∂rα
`

fC(rij)fA(rij) + fC(rij)fA(rij)
∂

∂rα
`

γij , (2.104)

with the contributions from the first two terms being:

− ∂

∂rα
`

fC(rij)fR(rij) = −
{

fC(rij)
∂

∂rij
fR(rij) + fR(rij)

∂

∂rij
fC(rij)

}
×

{
δj`

rα
i`

ri`
− δi`

rα
`j

r`j

}
(2.105)

γij
∂

∂rα
`

fC(rij)fA(rij) = γij

{
fC(rij)

∂

∂rij
fA(rij) + fA(rij)

∂

∂rij
fC(rij)

}
×

{
δj`

rα
i`

ri`
− δi`

rα
`j

r`j

}
, (2.106)

and from the third (angular) term:

fC(rij)fA(rij)
∂

∂rα
`

γij = fC(rij)fA(rij) χij ×
(
−1

2

) (
1 + βi

ηi Lηi
ij

)− 1
2ηi
−1

βi
ηi Lηi−1

ij

∂

∂rα
`

Lij , (2.107)

where
∂

∂rα
`

Lij =
∂

∂rα
`

∑

k 6=i,j

ωik fC(rik) g(θijk) . (2.108)

The angular term can have three different contributions depending on the index of the
particle participating in the interaction:

` = i :
∂

∂rα
i

Lij =
∑

k 6=i,j

ωik

[
g(θijk)

∂

∂rα
i

fC(rik) + fC(rik)
∂

∂rα
i

g(θijk)

]
(2.109)

` = j :
∂

∂rα
j

Lij =
∑

k 6=i,j

ωik fC(rik)
∂

∂rα
j

g(θijk) (2.110)

` 6= i, j :
∂

∂rα
`

Lij = ωi`

[
g(θij`)

∂

∂rα
`

fC(ri`) + fC(ri`)
∂

∂rα
`

g(θij`)

]
. (2.111)

c©CCLRC 37

The derivative of g(θijk) is worked out in the following manner:

∂

∂rα
`

g(θijk) =
∂g(θijk)
∂θijk

−1
sin θijk

∂

∂rα
`

{
rij · rik

rij rik

}
, (2.112)

where

∂g(θijk)
∂θijk

=
2 c2

i (hi − cos θijk) sin θijk

[d2
i + (hi − cos θijk)2]2

(2.113)

∂

∂rα
`

{
rij · rik

rijrik

}
= (δ`j − δ`i)

rα
ik

rijrik
+ (δ`k − δ`i)

rα
ij

rijrik
−

cos(θjik)

{
(δ`j − δ`i)

rα
ij

r2
ij

+ (δ`k − δ`i)
rα
ik

r2
ik

}
. (2.114)

The contribution to be added to the atomic virial can be derived as

W = 3V
∂Etersoff

∂V
=

3 V

2

∑

i6=j

∂Uij

∂V
(2.115)

W =
1
2

∑

i 6=j

[
∂

∂rij
fC(rij)fR(rij)− γij

∂

∂rij
fC(rij)fA(rij)

]
rij −

(
−1

2

)
fC(rij)fA(rij) χij

(
1 + βi

ηi Lηi
ij

)− 1
2ηi
−1

βi
ηi Lηi−1

ij × (2.116)

∑

k 6=i,j

ωik g(θijk)
[

∂

∂rik
fC(rik)

]
rik .

The contribution to be added to the atomic stress tensor is given by

σαβ = −rα
i fβ

i , (2.117)

where α and β indicate the x, y, z components. The stress tensor is symmetric.
Interpolation arrays, vmbp and gmbp (set up in subroutine tergen) - similar to those

in van der Waals interactions 2.3.1 - are used in the calculation of the Tersoff forces, virial
and stress.

The Tersoff potentials are very short ranged, typically of order 3 Å. This property, plus
the fact that Tersoff potentials (two- and three-body contributions) scale as N3, where N
is the number of particles, makes it essential that these terms are calculated by the link-cell
method [28].

DL POLY 2 applies no long range corrections to the Tersoff potentials. In DL POLY 2
Tersoff forces are handled by the routines tersoff, terint and tersoff3.

2.3.4 Four Body Potentials

The four-body potentials in DL POLY 2 are entirely inversion angle forms, primarily in-
cluded to permit simulation of amorphous materials (particularly borate glasses). The
potential forms available in DL POLY 2 are as follows.

c©CCLRC 38

1. Harmonic: (harm)

U(φijkn) =
1
2
k(φijkn − φ0)2 (2.118)

2. Harmonic cosine: (hcos)

U(φijkn) =
k

2
(cos(φijkn)− cos(φ0))2 (2.119)

3. Planar potential: (plan)

U(φijkn) = A[1− cos(φijkn)] (2.120)

These functions are identical to those appearing in the intra-molecular inversion angle
descriptions above. There are significant differences in implementation however, arising
from the fact that the four-body potentials are regarded as inter-molecular. Firstly, the
atoms involved are defined by atom types, not specific indices. Secondly, there are no
excluded atoms arising from the four-body terms. (The inclusion of other potentials, for
example pair potentials, may in fact be essential to maintain the structure of the system.)

The four body potentials are very short ranged, typically of order 3 Å. This property,
plus the fact that four body potentials scale as N4, where N is the number of particles,
makes it essential that these terms are calculated by the link-cell method [28].

The calculation of the forces, virial and stress tensor described in the section on inversion
angle potentials above.

DL POLY 2 applies no long range corrections to the four body potentials. The four-
body forces are calculated by the routine fbpfrc.

2.3.5 Metal Potentials

DL POLY 2 includes density dependent potentials suitable for calculating the properties of
metals. The basic model is due to Finnis and Sinclair [29] as implemented by Sutton and
Chen [3]. The form of the potential is: (stch)

Usc = ε


∑

i<j

(
a

rij

)n

− C
∑

i

ρ
1/2
i


 , (2.121)

where the local density ρi is given by

ρi =
∑

j

(
a

rij

)m

(2.122)

The Sutton-Chen potential has the advantage that it is decomposable into pair contributions
and thus falls within the general tabulation scheme of DL POLY 2 , where it is treated as
a short ranged interaction. The same form of potential may be used in alloys, through the
appropriate choice of parameters ε and a. The parameters n and m however must be the
same for all component elements. DL POLY 2 calculates this potential in two stages: the

c©CCLRC 39

first calculates the local density ρi for each atom; and the second calculates the potential
energy and forces. Interpolation arrays are used in both these stages.

The total force f tot
j

on an atom j derived from this potential is calculated in the standard
way:

f tot
j

= −∇jUsc, (2.123)

which gives

f tot
j

= −ε
∑

i6=j

[
n

(
a

rij

)n

− Cm

2
(ρ−1/2

j + ρ
−1/2
i)

(
a

rij

)m] (
1
r2
ij

)
rij , (2.124)

which is recognisable as a sum of pair forces, for example the force on atom j due to the
atom i:

f
j

= −ε

[
n

(
a

rij

)n

− Cm

2
(ρ−1/2

j + ρ
−1/2
i)

(
a

rij

)m] (
1
r2
ij

)
rij , (2.125)

where rij = rj − ri. The force on atom i is the negative of this.
With the pair forces thus defined the contribution to be added to the atomic virial from

each atom pair is then
W = −rij · f j

. (2.126)

The contribution to be added to the atomic stress tensor is given by

σαβ = rα
ijf

β
j , (2.127)

where α and β indicate the x, y, z components. The atomic stress tensor is symmetric.
The long range correction for the system potential is in two parts. Firstly by analogy

with the short ranged potentials the correction to the local density is obtained by

ρi = ρo
i + 4πρ̄

∫ ∞

rcut

(
a

r

)m

r2dr, (2.128)

where ρo
i is the uncorrected local density and ρ̄ is the mean particle density. Evaluating the

integral yields

δρ = 4π
ρ̄a3

(m− 3)

(
a

rcut

)m−3

(2.129)

which is the local density correction and is identical for all atoms. The correction is applied
immediately after the local density is calculated. The density term of the Sutton Chen
potential needs no further correction. The pair term correction is obtained by analogy with
the short ranged potentials and is

Ucorr = 2π
Nερ̄a3

(n− 3)

(
a

rcut

)n−3

. (2.130)

The correction to the local density having already been applied.
To estimate the virial correction we assume the corrected local densities are constants

(i.e. independent of distance - at least beyond the range rcut). This allows the virial

c©CCLRC 40

correction to be computed by the methods used in the short ranged potentials. The result
is:

Wcorr = −2πρ̄a3

{
nNε

(n− 3)

(
a

rcut

)n−3

− mε2C2

(m− 3)

(
a

rcut

)m−3 N∑

i

ρ
−1/2
i

}
(2.131)

This correction may be used as it stands, or with the further approximation:

N∑

i

ρ
−1/2
i =

N

< ρ
1/2
i >

(2.132)

where < ρ
1/2
i > is regarded as a constant of the system.

In DL POLY 2 the metal forces are handled by the routine suttchen. The local density
is calculated by routines scdens and denloc. The long range corrections are calculated
by lrcmetal.

2.3.6 External Fields

In addition to the molecular force field, DL POLY 2 allows the use of an external force
field. Examples of field available include:

1. Electric field: (elec)
Fi = Fi + qi.H (2.133)

2. Oscillating shear: (oshm)
F x = A cos(2nπ.z/Lz) (2.134)

3. Continuous shear: (shrx)

vx =
1
2
A
|z|
z

: |z| > z0 (2.135)

4. Gravitational field: (grav)
Fi = Fi + mi.H (2.136)

5. Magnetic field: (magn)
Fi = Fi + qi.(vi ∧H) (2.137)

6. Containing sphere: (sphr)

F = A(R0 − r)−n : r > Rcut (2.138)

7. Repulsive wall: (zbnd)

F = A(zo − z) : z > zo (2.139)

It is recommended that the use of an external field should be accompanied by a thermostat
(this does not apply to examples 6 and 7, since these are conservative fields). The user is
advised to be careful with units!

In DL POLY 2 external field forces are handled by the routine extnfld.

c©CCLRC 41

2.4 Long Ranged Electrostatic (Coulombic) Potentials

DL POLY 2 incorporates several techniques for dealing with long ranged electrostatic po-
tentials. 2 These are as follows.

1. Atomistic and charge group implementation.

2. Direct Coulomb sum;

3. Truncated and shifted Coulomb sum;

4. Coulomb sum with distance dependent dielectric;

5. Ewald sum;

6. Smoothed Particle Mesh Ewald (SPME);

7. Hautman Klein Ewald for systems with 2D periodicity;

8. Reaction field;

9. Dynamical shell model;

10. Relaxed shell model.

Some of these techniques can be combined. For example 1, 3 and 4 can be used in conjunc-
tion with 9. The Ewald sum, SPME and Hautman Klein Ewald are restricted to periodic (or
pseudo-periodic) systems only, though DL POLY 2 can handle a broad selection of periodic
boundary conditions, including cubic, orthorhombic, parallelepiped, truncated octahedral,
hexagonal prism and rhombic dodecahedral. The Ewald sum is the method of choice for
periodic systems. The other techniques can be used with either periodic or non-periodic
systems, though in the case of the direct Coulomb sum, there are likely to be problems
with convergence.

DL POLY 2 will correctly handle the electrostatics of both molecular and atomic species.
However it is assumed that the system is electrically neutral. A warning message is printed
if the system is found to be charged, but otherwise the simulation proceeds as normal. No
correction for non-neutrality is applied.

2.4.1 Atomistic and Charge Group Implementation

The Ewald sum is an accurate method for summing long-ranged Coulomb potentials in
periodic systems. This can be a very cpu intensive calculation and the use of more efficient,
but less accurate methods, is common. Invariably this involves truncation of the potential at
some finite distance rcut. If an atomistic scheme is used for the truncation criterion there is
no guarantee that the interaction sphere will be neutral and spurious “charging” effects will
almost certainly be seen in a simulation. This arises because the potential being truncated

2Unlike the other elements of the force field, the electrostatic forces are NOT specified in the input
FIELD file, but by setting appropriate directives in the CONTROL file. See section 4.1.1.

c©CCLRC 42

is long-ranged (1/r for charge-charge interactions). However if the cutoff scheme is based
on neutral groups of atoms, then at worst, at long distance the interaction will be a dipole-
dipole interaction and vary as 1/r3. The truncation effects at the cutoff are therefore much
less severe than if an atomistic scheme is used. In DL POLY 2 the interaction is evaluated
between all atoms of both groups if any site of the first group is within the cutoff distance
of any site of the second group. The groups are known interchangeably as “charge groups”
or “neutral groups” in the documentation - which serves as a reminder that the advantages
of using such a scheme are lost if the groups carry an overall charge. There is no formal
requirement in DL POLY 2 that the groups actually be electrically neutral.

The charge group scheme is more cpu intensive than a simple atomistic cutoff scheme as
more computation is required to determine whether or not to include a set of interactions.
However the size of the Verlet neighbourhood list (easily the largest array in DL POLY 2
) is considerably smaller with a charge group scheme than an atomistic scheme as only a
list of interacting groups need be stored as opposed to a list of interacting atoms.

2.4.2 Direct Coulomb Sum

Use of the direct Coulomb sum is sometimes necessary for accurate simulation of isolated
(nonperiodic) systems. It is not recommended for periodic systems.

The interaction potential for two charged ions is

U(rij) =
1

4πε0

qiqj

rij
(2.140)

with q` the charge on an atom labelled `, and rij the magnitude of the separation vector
rij = rj − ri.

The force on an atom j derived from this force is

f
j

=
1

4πε0

qiqj

r3
ij

rij (2.141)

with the force on atom i the negative of this.
The contribution to the atomic virial is

W = − 1
4πε0

qiqj

rij
(2.142)

which is simply the negative of the potential term.
The contribution to be added to the atomic stress tensor is

σαβ = rα
ijf

β
j , (2.143)

where α, β are x, y, z components. The atomic stress tensor is symmetric.
In DL POLY 2 these forces are handled by the routines coul0 and coul0neu.

c©CCLRC 43

2.4.3 Truncated and Shifted Coulomb Sum

This form of the Coulomb sum has the advantage that it drastically reduces the range of
electrostatic interactions, without giving rise to a violent step in the potential energy at the
cutoff. Its main use is for preliminary preparation of systems and it is not recommended
for realistic models.

The form of the potential function is

U(rij) =
qiqj

4πε0

{
1
rij

− 1
rcut

}
(2.144)

with q` the charge on an atom labelled `, rcut the cutoff radius and rij the magnitude of
the separation vector rij = rj − ri.

The force on an atom j derived from this potential, within the radius rcut, is

f
j

=
1

4πε0

qiqj

r3
ij

rij (2.145)

with the force on atom i the negative of this.
The contribution to the atomic virial is

W = −rij · f j
(2.146)

which is not the negative of the potential term in this case.
The contribution to be added to the atomic stress tensor is given by

σαβ = rα
ijf

β
j , (2.147)

where α, β are x, y, z components. The atomic stress tensor is symmetric.
In DL POLY 2 these forces are handled by the routine coul1.
A further refinement of this approach is to truncate the 1/r potential at rcut and add

a linear term to the potential in order to make both the energy and the force zero at the
cutoff. The potential is thus

U(rij) =
qiqj

4πε0

[
1
rij

+
rij

r2
cut

− 2
rcut

]
(2.148)

with the force on atom j given by

f
j

=
qiqj

4πε0

[
1
r2
ij

− 1
r2
cut

]
rij (2.149)

with the force on atom i the negative of this.
This removes the heating effects that arise from the discontinuity in the forces at the

cutoff in the simple truncated and shifted potential. The physics of this potential however
are little better. It is only recommended for very crude structure optimizations.

c©CCLRC 44

The contribution to the atomic virial is

W = −rij · f j
(2.150)

which is not the negative of the potential term.
The contribution to be added to the atomic stress tensor is given by

σαβ = rα
ijf

β
j , (2.151)

where α, β are x, y, z components. The atomic stress tensor is symmetric.
In DL POLY 2 these forces are handled by the routine coul4.

2.4.4 Coulomb Sum with Distance Dependent Dielectric

This potential attempts to address the difficulties of applying the direct Coulomb sum,
without the brutal truncation of the previous case. It hinges on the assumption that the
electrostatic forces are effectively ‘screened’ in real systems - an effect which is approximated
by introducing a dielectic term that increases with distance.

The interatomic potential for two charged ions is

U(rij) =
1

4πε0ε(rij)
qiqj

rij
(2.152)

with q` the charge on an atom labelled `, and rij the magnitude of the separation vector
rij = rj−ri. ε(r) is the distance dependent dielectric function. In DL POLY 2 it is assumed
that this function has the form

ε(r) = εr (2.153)

where ε is a constant. Inclusion of this term effectively accelerates the rate of convergence
of the Coulomb sum.

The force on an atom j derived from this potential is

f
j

=
1

2πε0ε

qiqj

r4
ij

rij (2.154)

with the force on atom i the negative of this.
The contribution to the atomic virial is

W = −rij · f j
(2.155)

which is −2 times the potential term.
The contribution to be added to the atomic stress tensor is given by

σαβ = rα
ijf

β
j , (2.156)

where α, β are x, y, z components. The atomic stress tensor is symmetric.
In DL POLY 2 these forces are handled by the routines coul2 and coul2neu.

c©CCLRC 45

2.4.5 Ewald Sum

The Ewald sum [11] is the best technique for calculating electrostatic interactions in a
periodic (or pseudo-periodic) system.

The basic model for a neutral periodic system is a system of charged point ions mutually
interacting via the Coulomb potential. The Ewald method makes two amendments to this
simple model. Firstly each ion is effectively neutralised (at long range) by the superposition
of a spherical gaussian cloud of opposite charge centred on the ion. The combined assembly
of point ions and gaussian charges becomes the Real Space part of the Ewald sum, which
is now short ranged and treatable by the methods described above (section 2.1). 3 The
second modification is to superimpose a second set of gaussian charges, this time with the
same charges as the original point ions and again centred on the point ions (so nullifying
the effect of the first set of gaussians). The potential due to these gaussians is obtained
from Poisson’s equation and is solved as a Fourier series in Reciprocal Space. The complete
Ewald sum requires an additional correction, known as the self energy correction, which
arises from a gaussian acting on its own site, and is constant. Ewald’s method therefore
replaces a potentially infinite sum in real space by two finite sums: one in real space and
one in reciprocal space; and the self energy correction.

For molecular systems, as opposed to systems comprised simply of point ions, additional
modifications are necessary to correct for the excluded (intra-molecular) Coulombic inter-
actions. In the real space sum these are simply omitted. In reciprocal space however, the
effects of individual gaussian charges cannot easily be extracted, and the correction is made
in real space. It amounts to removing terms corresponding to the potential energy of an ion
` due to the gaussian charge on a neighbouring charge m (or vice versa). This correction
appears as the final term in the full Ewald formula below. The distinction between the
error function erf and the more usual complementary error function erfc found in the real
space sum, should be noted.

The total electrostatic energy is given by the following formula.

Uc =
1

2Voε0

∞∑

k 6=0

exp(−k2/4α2)
k2

|
N∑

j

qj exp(−ik · rj)|2 +
1

4πε0

N∗∑

n<j

qjqn

rnj
erfc(αrnj)

− 1
4πε0

∑

molecules

M∗∑

`≤m

q`qm

{
δ`m

α√
π

+
erf(αr`m)

r1−δ`m
`m

}
, (2.157)

where N is the number of ions in the system and N∗ the same number discounting any
excluded (intramolecular) interactions. M∗ represents the number of excluded atoms in a
given molecule and includes the atomic self correction. Vo is the simulation cell volume and
k is a reciprocal lattice vector defined by

k = `u + mv + nw (2.158)
3Strictly speaking, the real space sum ranges over all periodic images of the simulation cell, but in the

DL POLY 2 implementation, the parameters are chosen to restrict the sum to the simulation cell and its
nearest neighbours i.e. the minimum images of the cell contents.

c©CCLRC 46

where `,m, n are integers and u, v, w are the reciprocal space basis vectors. Both Vo and
u, v, w are derived from the vectors (a, b, c) defining the simulation cell. Thus

Vo = |a · b× c| (2.159)

and

u = 2π
b× c

a · b× c

v = 2π
c× a

a · b× c
(2.160)

w = 2π
a× b

a · b× c
.

With these definitions, the Ewald formula above is applicable to general periodic systems.
(A small additional modification is necessary for rhombic dodecahedral and truncated oc-
tahedral simulation cells [30].)

In practice the convergence of the Ewald sum is controlled by three variables: the
real space cutoff rcut; the convergence parameter α and the largest reciprocal space vector
kmax used in the reciprocal space sum. These are discussed more fully in section 3.3.5.
DL POLY 2 can provide estimates if requested (see CONTROL file description 4.1.1.

The force on an atom j is obtained by differentiation and is

f
j

= − qj

Voε0

∞∑

k 6=0
ik exp(k · rj)

exp(−k2/4α2)
k2

N∑
n

qn exp(−ik · rn)

+
qj

4πε0

N∗∑
n

qn

r3
nj

{
erfc(αrnj) +

2αrnj√
π

exp(−α2r2
nj)

}
rnj (2.161)

− qj

4πε0

M∗∑

`

q`

r3
`j

{
erf(αr`j)− 2αr`j√

π
exp(−α2r2

`j)
}

r`j

The electrostatic contribution to the system virial can be obtained as the negative of the
Coulombic energy. However in DL POLY 2 this formal equality can be used as a check on
the convergence of the Ewald sum. The actual electrostatic virial is obtained during the
calculation of the diagonal of the stress tensor.

The electrostatic contribution to the stress tensor is given by

σ =
1

2Voε0

∞∑

k 6=0

{
1− 2

(
1

4α2
+

1
k2

)
K

}
exp(−k2/4α2)

k2
|

N∑

j

qj exp(−ik · rj)|2

+
1

4πε0

N∗∑

j<n

qjqn

r3
nj

{
erfc(αrnj) +

2αrnj√
π

exp(−α2r2
nj)

}
Rnj (2.162)

− 1
4πε0

M∗∑

j<`

qjq`

r3
`j

{
erf(αr`j)− 2αr`j√

π
exp(−α2r2

`j)
}

R`j,

c©CCLRC 47

where matrices K and R`j are defined as follows.

Kαβ = kαkβ (2.163)

Rαβ
`j = rα

`jr
β
`j (2.164)

In DL POLY 2 the full Ewald sum is handled by several routines: ewald1 and ewald1a
handle the reciprocal space terms; ewald2, ewald2 2pt, ewald2 rsq and ewald4,
ewald4 2pt handle the real space terms (with the same Verlet neighbour list routines
that are used to calculate the short range forces); and ewald3 calculates the self interac-
tion corrections. It should be noted that the Ewald potential and force interpolation arrays
in DL POLY 2 are erc and fer respectively.

2.4.6 Smoothed Particle Mesh Ewald

As its name implies the Smoothed Particle Mesh Ewald (SPME) method is a modification
of the standard Ewald method. DL POLY 2 implements the SPME method of Essmann
et al. [31]. Formally this method is capable of treating van der Waals forces also, but
in DL POLY 2 it is confined to electrostatic forces only. The main difference from the
standard Ewald method is in its treatment of the the reciprocal space terms. By means
of an interpolation procedure involving (complex) B-splines, the sum in reciprocal space is
represented on a three dimensional rectangular grid. In this form the Fast Fourier Trans-
form (FFT) may be used to perform the primary mathematical operation, which is a 3D
convolution. The efficiency of these procedures greatly reduces the cost of the reciprocal
space sum when the range of k vectors is large. The method (briefly) is as follows (for full
details see [31]):

1. Interpolation of the exp(−ik · rj) terms (given here for one dimension):

exp(2πiujk/L) ≈ b(k)
∞∑

`=−∞
Mn(uj − `)exp(2πik`/K) (2.165)

in which k is the integer index of the k vector in a principal direction, K is the total
number of grid points in the same direction and uj is the fractional coordinate of ion
j scaled by a factor K (i.e. uj = Ksx

j). Note that the definition of the B-splines
implies a dependence on the integer K, which limits the formally infinite sum over
`. The coefficients Mn(u) are B-splines of order n and the factor b(k) is a constant
computable from the formula:

b(k) = exp(2πi(n− 1)k/K)

[
n−2∑

`=0

Mn(` + 1)exp(2πik`/K)

]−1

(2.166)

2. Approximation of the structure factor S(k):

S(k) ≈ b1(k1)b2(k2)b3(k3)Q†(k1, k2, k3) (2.167)

c©CCLRC 48

where Q†(k1, k2, k3) is the discrete Fourier transform of the charge array Q(`1, `2, `3)
defined as

Q(`1, `2, `3) =
N∑

j=1

qj

∑
n1,n2,n3

Mn(u1j−`1−n1L1)Mn(u2j−`2−n2L2)Mn(u3j−`3−n3L3)

(2.168)
(in which the sums over n1,2,3 etc are required to capture contributions from all
relevant periodic cell images, which in practice means the nearest images.)

3. Approximating the reciprocal space energy Urecip:

Urecip =
1

2Voε0

∑

k1,k2,k3

G†(k1, k2, k3)Q(k1, k2, k3) (2.169)

in which G† is the discrete Fourier transform of the function

G(k1, k2, k3) =
exp(−k2/4α2)

k2
B(k1, k2, k3)(Q†(k1, k2, k3))∗ (2.170)

and where
B(k1, k2, k3) = |b1(k1)|2|b2(k2)|2|b3(k3)|2 (2.171)

and (Q†(k1, k2, k3))∗ is the complex conjgate of Q†(k1, k2, k3). The function G(k1, k2, k3)
is thus a relatively simple product of the gaussian screening term appearing in the
conventional Ewald sum, the function B(k1, k2, k3) and the discrete Fourier transform
of Q(k1, k2, k3)

4. Calculating the atomic forces, which are given formally by:

fα
j = −∂Urecip

∂rα
j

= − 1
Voε0

∑

k1,k2,k3

G†(k1, k2, k3)
∂Q(k1, k2, k3)

∂rα
j

(2.172)

Fortunately, due to the recursive properties of the B-splines, these formulae are easily
evaluated.

The virial and the stress tensor are calculated in the same manner as for the conventional
Ewald sum.

The DL POLY 2 subroutines required to calculate the SPME contributions are:
bspgen, which calculates the B-splines; bspcoe, which calculates B-spline coefficients;
spl cexp, which calculates the FFT and B-spline complex exponentials; ewald spme,
which calculates the reciprocal space contributions; spme for, which calculates the recip-
rocal space forces; and dlpfft3, which calculates the 3D complex fast Fourier transform
(default code only, Cray, SGI, IBM SP machines have their own FFT routines, selected at
compile time and the FFTW public FFT is also an option). These subroutines calculate
the reciprocal space components of the Ewald sum only, the real-space calculations are per-
formed by ewald2, ewald3 and ewald 4, as for the normal Ewald sum. In addition there
are a few minor utility routines : cpy rtc copies a real array to a complex array; ele prd
is an element-for-element product of two arrays; scl csum is a scalar sum of elements of a
complex array; and set block initialises an array to a preset value (usually zero).

c©CCLRC 49

2.4.7 Hautman Klein Ewald (HKE)

The method of Hautman and Klein is an adaptation of the Ewald method for systems which
are periodic in two dimensions only [32]. (DL POLY 2 assumes this periodicity is in the
XY plane.)

The HKE method gives the following formula for the electrostatic energy of a system
of N (nonbonded) ions that is overall charge neutral4:

Uc =
1

4ε0A

nmax∑

n=0

an

N∑

i,j

qiqjz
2n
ij

∑

g 6=0
fn(g; α)g2n−1exp(ig · sij) +

1
8πε0

N∑

i 6=j

qiqj

∑

L

(
1

rij,L
−

nmax∑
n

anz2n
ij

hn(sij,L; α)
s2n+1
ij,L

)
+

1
8πε0

N∑

i

q2
i

∑

L

(1− h0(L; α))
L

− α

ε0π3/2

N∑

i

q2
i (2.173)

In this formula A is the system area (in the XY plane), L is a 2D lattice vector representing
the 2D periodicity of the system, sij is the in-plane (XY) component of the interparticle
distance rij and g is a reciprocal lattice vector. Thus

L = `1a + `2b, (2.174)

where `1, `2 are integers and vectors a and b are the lattice basis vectors. The reciprocal
lattice vectors are:

g = n1u + n2v (2.175)

where n1, n2 are integers u, v are reciprocal space vectors (defined in terms of the vectors a
and b):

u = 2π(by,−bx)†/(axby − aybx)
v = 2π(−ay, ax)†/(axby − aybx). (2.176)

The functions hn(s;α) and fn(s;α) are the HKE convergence functions, in real and recipro-
cal space respectively. (C.f. the complementary error and gaussian functions of the original
Ewald method.) However they occur to higher orders here, as indicated by the sum over
subscript n, which corresponds to terms in a Taylor expansion of r−1 in s, the in-plane
distance [32]. Usually this sum is truncated at nmax = 1, but in DL POLY 2 can go as
high as nmax = 3. In the HKE method the convergence functions are defined as follows:

hn(s; α)/s2n+1 =
1

an(2n)!
∇2n(h0(s;α)/s) (2.177)

4The reader is warned that for the purpose of compatibility with other DL POLY 2 Ewald routines we
have defined α = 0.5/αHK , where αHK is the α parameter defined by Hautman and Klein in [32].

c©CCLRC 50

with
h0(s; α) = erf(αs) (2.178)

and
fn(g; α) =

1
an(2n)!

f0(g; α) (2.179)

with
f0(g; α) = erfc(g/2α). (2.180)

In DL POLY 2 the hn(s;α)/s2n+1 functions are derived by a recursion algorithm, while the
fn(g; α) functions are obtained by direct evaluation. The coefficients an are given by

an = (−1)n(2n)!/(22n(n!)2). (2.181)

As pointed out by Hautman and Klein, the equation (2.173) allows separation of the z2n
ij

components via the binomial expansion, which greatly simplifies the double sum over atoms
in reciprocal space. Thus the reciprocal space part of equation (2.173) becomes

Urecip =
1

4ε0A

nmax∑

n=0

an

∑

g 6=0
fn(g;α)g2n−1

2n∑

p=0

(−1)pC2n
p Zp(g)Z∗2n−p(g) (2.182)

with C2n
p a binomial coefficient and

Zp(g) =
N∑

j=1

qjz
p
j exp(ig · sj) (2.183)

The force on an ion is obtained by the usual differentiation, however in this case the z
components have different expressions from the x and y.

− ∂Uc

∂uj
=

1
4ε0A

∑

g 6=0

nmax∑

n=0

anfn(g; α)g2n−1
2n∑

p=0

(−1)pC2n
p

(
Zp(g)

∂Z∗2n−p(g)
∂uj

+ Z∗2n−p(g)
∂Zp(g)

∂uj

)

+
qj

4πε0

nmax∑

n=0

∑

L

N∑

ij

′anqi
∂

∂uj

(
z2n
ij,L

hn(sij,L; α)
s2n+1
ij,L

)
(2.184)

where uj is one of xj , yj , zj and (noting for brevity that x and y derivatives are similar)

∂Zp(g)
∂xj

= igxqjz
p
j exp(ig · sj)

∂Zp(g)
∂zj

= pqjz
p−1
j exp(ig · sj) (2.185)

and

∂

∂xj

(
z2n
ij,L

hn(sij,L;α)
s2n+1
ij,L

)
= sx

ij,L

z2n
ij,L

sij,L

∂

∂xj

(
hn(sij,L; α)

s2n+1
ij,L

)

∂

∂zj

(
z2n
ij,L

hn(sij,L;α)
s2n+1
ij,L

)
= 2nz2n−1

ij,L

hn(sij,L; α)
s2n+1
ij,L

. (2.186)

c©CCLRC 51

In DL POLY 2 the partial derivatives of hn(sij,L;α)/s2n+1
ij,L are calculated by a recursion

algorithm. Note that when n = 0 there is no derivative w.r.t. z.
The virial and stress tensor terms in real space may be calculated directly from the pair

forces and interatomic distances in the usual way, and need not be discussed further. The
calculation of the reciprocal space contributions (the terms involving the fn(g;α) functions)
are more difficult. Firstly however we note that the reciprocal space contributions to σxz, σyz

and σzz may be obtained directly from the force calculations thus:

σrecip
xz =

∑

j

zjf
x
j

σrecip
yz =

∑

j

zjf
y
j (2.187)

σrecip
zz =

∑

j

zjf
z
j

which renders the calculation of these components trivial. The remaining components are
calculated from

σrecip
uv = Urecipδuv +

1
4ε0A

nmax∑

n=0

an

∑

g 6=0
gugv

g2n−2

an(2n)!

(
(2n− 1)f0(g;α)

g
− 1

α
√

π
exp(−g2/4α2)

)
(2.188)

2n∑

p=0

(−1)pC2n
p Zp(g)Z∗2n−p(g)

where u, v are one or both of the components x, y. Note that, although it is possible to define
these contributions to the stress tensor, it is not possible to calculate a pressure from them
unless a finite, arbitrary boundary is imposed on the z direction (which is an assumption
applied in DL POLY 2 , but without implications of periodicity in the z-direction). The
x, y components define the surface tension however.

For bonded molecules, as with the standard 3D Ewald sum, it is necessary to extract
contributions associated with the excluded atom pairs. In the DL POLY 2 HKE imple-
mentation this amounts to an a posteriori subtraction of the corresponding coulomb terms.

In DL POLY 2 the HKE method is handled by several subroutines: hkgen constructs
the hn(s; α) convergence functions and their derivatives; hkewald1 calculates the recipro-
cal space terms; hkewald2 and hkewald3 calculate the real space terms and the bonded
atom corrections respectively. hkewald4 calculates the primary interactions in the multi-
ple timestep implementation.

2.4.8 Reaction Field

In the reaction field method it is assumed that any given molecule is surrounded by a
spherical cavity of finite radius within which the electrostatic interactions are calculated
explicitly. Outside the cavity the system is treated as a dielectric continuum. The occurence

c©CCLRC 52

of any net dipole within the cavity induces a polarisation in the dielectric, which in turn
interacts with the given molecule. The model allows the replacement of the infinite Coulomb
sum by a finite sum plus the reaction field.

The reaction field model coded into DL POLY 2 is the implementation of Neumann
based on charge-charge interactions [33]. In this model, the total Coulombic potential is
given by

Uc =
1

4πε0

∑

j<n

qjqn

[
1

rnj
+

B0r
2
nj

2R3
c

]
(2.189)

where the second term on the right is the reaction field correction to the explicit sum, with
Rc the radius of the cavity. The constant B0 is defined as

B0 =
2(ε1 − 1)
(2ε1 + 1)

, (2.190)

with ε1 the dielectric constant outside the cavity. The effective pair potential is therefore

U(rnj) =
1

4πε0
qjqn

[
1

rnj
+

B0r
2
nj

2R3
c

]
. (2.191)

This expression unfortunately leads to large fluctuations in the system Coulombic energy,
due to the large ‘step’ in the function at the cavity boundary. In DL POLY 2 this is
countered by subtracting the value of the potential at the cavity boundary from each pair
contribution. The term subtracted is

1
4πε0

qjqn

Rc

[
1 +

B0

2

]
. (2.192)

The effective pair force on an atom j arising from another atom n within the cavity is
given by

f
j

=
qjqn

4πε0

[
1

r3
nj

− B0

R3
c

]
rnj . (2.193)

The contribution of each effective pair interaction to the atomic virial is

W = −rnj · f j
(2.194)

and the contribution to the atomic stress tensor is

σαβ = rα
njf

β
j . (2.195)

In DL POLY 2 the reaction field is handled by the routines coul3 and coul3neu.

2.4.9 Dynamical Shell Model

An atom or ion is polarisable if it develops a dipole moment when placed in an electric
field. It is commonly expressed by the equation

µ = αE, (2.196)

c©CCLRC 53

where µ is the induced dipole and E is the electric field. The constant α is the polarisability.
The dynamical shell model is a method of incorporating polarisability into a molecular

dynamics simulation. The method used in DL POLY 2 is that devised by Fincham et al
[34] and is known as the adiabatic shell model.

In the static shell model a polarisable atom is represented by a massive core and massless
shell, connected by a harmonic spring, hereafter called the core-shell unit. The core and
shell carry different electric charges, the sum of which equals the charge on the original
atom. There is no electrostatic interaction (i.e. self interaction) between the core and shell
of the same atom. Non-Coulombic interactions arise from the shell alone. The effect of
an electric field is to separate the core and shell, giving rise to a polarisation dipole. The
condition of static equilibrium gives the polarisability as:

α = q2
s/k (2.197)

where qs is the shell charge and k is the force constant of the harmonic spring.
In the adiabatic method, a fraction of the atomic mass is assigned to the shell to permit

a dynamical description. The fraction of mass is chosen to ensure that the natural frequency
of vibration ν of the harmonic spring (i.e.

ν =
1
2π

[
k

x(1− x)m

]1/2

, (2.198)

with m the atomic mass,) is well above the frequency of vibration of the whole atom in the
bulk system. Dynamically the core-shell unit resembles a diatomic molecule with a harmonic
bond, however the high vibrational frequency of the bond prevents effective exchange of
kinetic energy between the core-shell unit and the remaining system. Therefore, from an
initial condition in which the core-shell units have negligible internal vibrational energy,
the units will remain close to this condition throughout the simulation. This is essential if
the core shell unit is to maintain a net polarisation. (In practice there is a slow leakage of
kinetic energy into the core-shell units, but this should should not amount to more than a
few percent of the total kinetic energy.)

The calculation of the virial and stress tensor in this model is based on that for a
diatomic molecule with charged atoms. The electrostatic and short ranged forces are cal-
culated as described above. The forces of the harmonic springs are calculated as described
for intramolecular harmonic bonds. The relationship between the kinetic energy and the
temperature is different however, as the core-shell unit is permitted only three translational
degrees of freedom, and the degrees of freedom corresponding to rotation and vibration of
the unit are discounted (the kinetic energy of these is regarded as zero).

In DL POLY 2 the shell forces are handled by the routine shlfrc. The kinetic en-
ergy is calculated by corshl and the routine shqnch performs the temperature scaling.
The dynamical shell model is used in conjunction with the methods for long range forces
described above.

c©CCLRC 54

2.4.10 Relaxed Shell Model

The relaxed shell model is based on the same electrostatic principles as the dynamical shell
model but in this case the shell is assigned a zero mass. This means the shell cannot be
driven dynamically and instead the procedure is first to relax the shell to a condition of
zero (or at least negligible) force at the start of the integration of the atomic motion and
then integrate the motion of the finite mass core by conventional molecular dynamics. The
relaxation of the shells in DL POLY 2 is accomplished using conjugate gradients. Since
each timestep of the algorithm entails a minimisation operation the cost per timestep for
this algorithm is considerably more than the adiabatic shell model, however the integration
timestep permitted is much larger (as much as a factor 10) so evolution through phase
space is not necessarily very different in cost. A description of the method is presented in
[35].

2.5 Integration algorithms

2.5.1 The Verlet Algorithms

DL POLY integration algorithms are based on the Verlet scheme, which is both time re-
versible and simple [11]. It generates trajectories in the microcanonical (NVE) ensemble in
which the total energy (kinetic plus potential energy) is conserved. If this property drifts
or fluctuates excessively in the course of a simulation it indicates that the timestep is too
large or the potential cutoffs too small (relative r.m.s. fluctuations in the total energy of
10−5 are typical with this algorithm).

DL POLY 2 contains two versions of the Verlet algorithm. The first is the Verlet
leapfrog (LF) algorithm and the second is the velocity Verlet (VV).

2.5.1.1 Verlet Leapfrog

The LF algorithm requires values of position (r) and force (f) at time t while the velocities
(v) are half a timestep behind. The first step is to advance the velocities to t + (1/2)∆t by
integration of the force:

v(t +
1
2
∆t) ← v(t− 1

2
∆t) + ∆t

f(t)
m

(2.199)

where m is the mass of a site and ∆t is the timestep.
The positions are then advanced using the new velocities:

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t) (2.200)

Molecular dynamics simulations normally require properties that depend on position
and velocity at the same time (such as the sum of potential and kinetic energy). In the
LF algorithm the velocity at time t is obtained from the average of the velocities half a
timestep either side of time t:

v(t) =
1
2

[
v(t− 1

2
∆t) + v(t +

1
2
∆t)

]
(2.201)

c©CCLRC 55

The full selection of LF integration algorithms within DL POLY 2 is as follows:

nve 1 Verlet leaprog with SHAKE
nveq 1 Rigid units with FIQA and SHAKE
nveq 2 Linked rigid units with QSHAKE
nvt b1 Constant T (Berendsen [19]) with SHAKE
nvt e1 Constant T (Evans [18]) with SHAKE
nvt h1 Constant T (Hoover [20]) with SHAKE
nvtq b1 Constant T (Berendsen [19]) with FIQA and SHAKE
nvtq b2 Constant T (Berendsen [19]) with QSHAKE
nvtq h1 Constant T (Hoover [20]) with FIQA and SHAKE
nvtq h2 Constant T (Hoover [20]) with QSHAKE
npt b1 Constant T,P (Berendsen [19]) with FIQA and SHAKE
npt h1 Constant T,P+ (Hoover [20]) with SHAKE
nptq b1 Constant T,P (Berendsen [19]) with FIQA and SHAKE
nptq b2 Constant T,P (Berendsen [19]) with QSHAKE
nptq h1 Constant T,P (Hoover [20]) with FIQA and SHAKE
nptq h2 Constant T,P (Hoover [20]) with QSHAKE
nst b1 Constant T,σ (Berendsen [19]) with SHAKE
nst h1 Constant T,σ (Hoover [20]) with SHAKE
nstq b1 Constant T,σ (Berendsen [19]) with FIQA and SHAKE
nstq b2 Constant T,σ (Berendsen [19]) with QSHAKE
nstq h1 Constant T,σ (Hoover [20]) with FIQA and SHAKE
nstq h2 Constant T,σ (Hoover [20]) with QSHAKE

In the above table the FIQA algorithm is Fincham’s Implicit Quaternion Algorithm [14]
and QSHAKE is the DL POLY 2 algorithm combining rigid bonds and rigid bodies in the
same molecule [16].

2.5.1.2 Velocity Verlet

The VV algorithm assumes that positions, velocities and forces are known at each full
timestep. The algorithm proceeds in two stages as follows.

In the first stage a half step velocity is calculated:

v(t +
1
2
∆t) ← v(t) +

1
2
∆t

f(t)
m

(2.202)

and then the full timestep position is obtained:

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t) (2.203)

c©CCLRC 56

In the second stage, using the new positions, the next update of the forces f(t + ∆t) is
obtained, from which the full step velocity is calculated using:

v(t + ∆t) ← v(t +
1
2
∆t) +

1
2
∆t

f(t + ∆t)
m

(2.204)

Thus at the end of the two stages full synchronisation of the positions, forces and velocities
is obtained.

The full selection of VV integration algorithms within DL POLY 2 is as follows:

nvevv 1 Velocity Verlet with RATTLE
nveqvv 1 Rigid units with NOSQUISH and RATTLE
nveqvv 2 Linked rigid units with QSHAKE
nvtvv b1 Constant T (Berendsen [19]) with RATTLE
nvtvv e1 Constant T (Evans [18]) with RATTLE
nvtvv h1 Constant T (Hoover [20]) with RATTLE
nvtqvv b1 Constant T (Berendsen [19]) with NOSQUISH and RATTLE
nvtqvv b2 Constant T (Berendsen [19]) with QSHAKE
nvtqvv h1 Constant T (Hoover [20]) with NOSQUISH and RATTLE
nvtqvv h2 Constant T (Hoover [20]) with QSHAKE
nptvv b1 Constant T,P (Berendsen [19]) with NOSQUISH and RATTLE
nptvv h1 Constant T,P+ (Hoover [20]) with RATTLE
nptqvv b1 Constant T,P (Berendsen [19]) with NOSQUISH and RATTLE
nptqvv b2 Constant T,P (Berendsen [19]) with QSHAKE
nptqvv h1 Constant T,P (Hoover [20]) with NOSQUISH and RATTLE
nptqvv h2 Constant T,P (Hoover [20]) with QSHAKE
nstvv b1 Constant T,σ (Berendsen [19]) with RATTLE
nstvv h1 Constant T,σ (Hoover [20]) with RATTLE
nstqvv b1 Constant T,σ (Berendsen [19]) with NOSQUISH and RATTLE
nstqvv b2 Constant T,σ (Berendsen [19]) with QSHAKE
nstqvv h1 Constant T,σ (Hoover [20]) with NOSQUISH and RATTLE
nstqvv h2 Constant T,σ (Hoover [20]) with QSHAKE

In the above table the NOSQUISH algorithm is the rotational algorithm of Miller et al
[15] and QSHAKE is the DL POLY 2 algorithm combining rigid bonds and rigid bodies in
the same molecule [16].

2.5.1.3 Temperature and Energy Conservation

For both VV and LF the instantaneous temperature can be obtained from the atomic
velocities assuming the system has no net momentum:

T =
∑N

i=1 miv
2
i (t)

kBf
(2.205)

c©CCLRC 57

where i labels particles (which can be atoms or rigid molecules), N the number of particles
in the system, kB Boltzmanns constant and f the number of degrees of freedom in the
system (3N − 3 if the system is periodic and without constraints).

The total energy of the system is a conserved quantity

HNVE = U + KE (2.206)

where U is the potential energy of the system and KE the kinetic energy at time t.

2.5.2 Bond Constraints

2.5.2.1 SHAKE

The SHAKE algorithm for bond constraints was devised by Ryckaert et al. [12] and is
based on the Verlet leapfrog integration scheme [11]. It is a two stage scheme. In the first
stage the leapfrog algorithm calculates the motion of the atoms in the system assuming a
complete absence of the rigid bond forces. The positions of the atoms at the end of this
stage do not conserve the distance constraint required by the rigid bond and a correction
is necessary. In the second stage the deviation in the length of a given rigid bond is used
retrospectively to compute the constraint force needed to conserve the bondlength. It is
relatively simple to show that the constraint force has the form

Gij ≈
µij(d2

ij − d′2ij)
2∆t2do

ij · d′ij
do

ij (2.207)

where: µij is the reduced mass of the two atoms connected by the bond; do
ij and d′ij are the

original and intermediate bond vectors; dij is the constrained bondlength; and ∆t is the
Verlet integration timestep. It should be noted that this formula is an approximation only.

d

1

1

2

1’

2

2’

d

G

G

o

12

12

21

12

c©CCLRC 58

The SHAKE algorithm calculates the constraint force G12 = −G21 that conserves the
bondlength d12 between atoms 1 and 2, following the initial movement to positions 1′ and
2′ under the unconstrained forces F 1 and F 2.

For a system of simple diatomic molecules, computation of the constraint force will, in
principle, allow the correct atomic positions to be calculated in one pass. However in the
general polyatomic case this correction is merely an interim adjustment, not only because
the above formula is approximate, but the successive correction of other bonds in a molecule
has the effect of perturbing previously corrected bonds. The SHAKE algorithm is therfore
iterative, with the correction cycle being repeated for all bonds until each has converged to
the correct length, within a given tolerance. The tolerance may be of the order 10−4 Å to
10−8 Å depending on the precision desired.

The procedure may be summarised as follows:

1. All atoms in the system are moved using the Verlet algorithm, assuming an absence
of rigid bonds (constraint forces). (This is stage 1 of the SHAKE algorithm.)

2. The deviation in each bondlength is used to calculate the corresponding constraint
force (2.207) that (retrospectively) ‘corrects’ the bond length.

3. After the correction (2.207) has been applied to all bonds, every bondlength is checked.
If the largest deviation found exceeds the desired tolerance, the correction calculation
is repeated.

4. Steps 2 and 3 are repeated until all bondlengths satisfy the convergence criterion
(This iteration constitutes stage 2 of the SHAKE algorithm).

DL POLY 2 implements a parallel version of this algorithm [10] (see section 2.6.9).
The subroutine nve 1 implements the Verlet leapfrog algorithm with bond constraints for
the NVE ensemble. The routine rdshake 1 is called to apply the SHAKE corrections to
position.

It should be noted that the fully converged constraint forces Gij make a contribution
to the system virial and the stress tensor.

The contribution to be added to the atomic virial (for each constrained bond) is

W = −dij ·Gij . (2.208)

The contribution to be added to the atomic stress tensor is given by

σαβ = dα
ijG

β
ij , (2.209)

where α and β indicate the x, y, z components. The atomic stress tensor derived from the
pair forces is symmetric.

c©CCLRC 59

2.5.2.2 RATTLE

RATTLE [13] is the VV version of SHAKE. It has two parts: the first constrains the
bondlength and the second adds an additional constaint to the velocities of the atoms in
the constrained bond. The first of these constraints leads to an expression for the constriant
force similar to that for SHAKE:

Gij ≈
µij(d2

ij − d′2ij)
∆t2do

ij · d′ij
do

ij (2.210)

Note that this formula differs from equation (2.207) by a factor of 2. This constraint
force is applied during the first stage of the velocity Verlet algorithm.

The second constraint condition attempts to maintain the relative velocities of the atoms
sharing a bond to a direction perpendicular to the bond vector. This provides another
constraint force:

H ij ≈ −2µij

∆t

dij · (vj − vi)
d2

ij

dij (2.211)

This constraint force is applied during the second stage of the velocity Verlet algorithm.
Both constraint force calculations are iterative and are brought to convergence before pro-
ceeding to the next stage of the velocity Verlet scheme.

DL POLY 2 implements a parallel version of RATTLE that is based on the same ap-
proach as SHAKE [10] (see section 2.6.9). The subroutine nvevv 1 implements the velocity
Verlet algorithm with bond constraints in the NVE ensemble. The subroutine rdrattle r
is called to apply the corrections to atom positions and the subroutine rdrattle v is called
to correct the atom velocities.

2.5.3 Potential of Mean Force (PMF) Constraints and the Evaluation of
Free Energy

A generalization of bond constraints can be made to constrain a system to some point along
a reaction coordinate. A simple example of such a reaction coordinate would be the distance
between two ions in solution. If a number of simulations are conducted with the system
constrained to different points along the reaction coordinate then the mean constraint force
may be plotted as a function of reaction coordinate and the function integrated to obtain the
free energy for the overall process [36]. The PMF constraint force, virial and contributions
to the stress tensor are obtained in a manner analagous to that for a bond constraint
(see previous section). The only difference is that the constraint is now applied between
the centres of two groups which need not be atoms alone. DL POLY 2 reports the PMF
constraint virial, W, for each simulation. Users can convert this to the PMF constraint
force from

GPMF = −WPMF/dPMF

where dPMF is the constraint distance between the two groups used to define the reaction
coordinate.

c©CCLRC 60

DL POLY 2 can calculate the PMF using either LF or VV algorithms. Subroutines
pmflf and pmf shake are used in the LF scheme and subroutines pmfvv, pmf rattle r
and pmf rattle v are used in the VV scheme.

2.5.4 Thermostats

The system may be coupled to a heat bath to ensure that the average system temperature
is maintained close to the requested temperature, Text. When this is done the equations
of motion are modified and the system no longer samples the microcanonical ensemble.
Instead trajectories in the canonical (NVT) ensemble, or something close to it are generated.
DL POLY 2 comes with three different thermostats: Nosé -Hoover [20], Berendsen [19], and
Gaussian constraints [18]. Of these only the Nosé-Hoover algorithm generates trajectories
in the canonical (NVT) ensemble. The other methods will produce properties that typically
differ from canonical averages by O(1/N) [11]

2.5.4.1 Nosé - Hoover Thermostat

In the Nosé-Hoover algorithm [20] Newton’s equations of motion are modified to read:

dr(t)
dt

= v(t)

dv(t)
dt

=
f(t)
m

− χ(t)v(t) (2.212)

(2.213)

The friction coefficient, χ, is controlled by the first order differential equation

dχ(t)
dt

=
NfkB

Q
(T (t)− Text) (2.214)

where Q = NfkBTextτ
2
T is the effective ‘mass’ of the thermoststat, τT is a specified time

constant (normally in the range [0.5, 2] ps) and Nf is the number of degrees of freedom in
the system. T (t) is the instantaneous temperature of the system at time t.

In the LF version of DL POLY 2 χ is stored at half timesteps as it has dimensions of
(1/time). The integration takes place as:

χ(t +
1
2
∆t) ← χ(t− 1

2
∆t) + ∆t

NfkB

Q
(T (t)− Text)

χ(t) ← 1
2

[
χ(t− 1

2
∆t) + χ(t +

1
2
∆t)

]

v(t +
1
2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)
m

− χ(t)v(t)

]

v(t) ← 1
2

[
v(t− 1

2
∆t) + v(t +

1
2
∆t)

]

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t) (2.215)

c©CCLRC 61

Since v(t) is required to calculate T (t) and itself, the algorithm requires several iterations
to obtain self consistency. In DL POLY 2 the number of iterations is set to 3 (4 if the
system has bond constraints). The iteration procedure is started with the standard Verlet
leapfrog prediction of v(t) and T (t). The conserved quantity is derived from the extended
Hamiltonian for the system which, to within a constant, is the Helmholtz free energy:

HNVT = U + KE +
1
2
Qχ(t)2 +

Q

τ2
T

∫ t

o
χ(s)ds (2.216)

If bond constraints are present an extra iteration is required due to the call to the
SHAKE routine. The algorithm is implemented in the DL POLY routine nvt h1, for
systems with bond constraints.

In the VV version of DL POLY 2 the Hoover algorithm is split into stages in accordance
with the principles of Martyna et al [17] for designing reversible integrators. The scheme
applied here is:

χ(t +
1
2
∆t) ← χ(t) +

∆tNfkB

2Q
(T (t)− Text)

v′(t) ← v(t)− ∆t

2
χ(t +

1
2
∆t)v(t)

v(t +
1
2
∆t) ← v′(t) +

∆t

2
f(t)
m

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t)

call rattle(R)

v′(t + ∆t) ← v(t +
1
2
∆t) +

∆t

2
f(t + ∆t)

m
call rattle(V)

χ(t + ∆t) ← χ(t +
1
2
∆t) +

∆tNfkB

2Q
(T (t + ∆t)− Text)

v(t + ∆t) ← v′(t + ∆t)− ∆t

2
χ(t + ∆t)v′(t + ∆t) (2.217)

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae
(2.210) and (2.211) respectively. The equations have the same conserved variable (HNVT)
as the LF scheme. The integration is performed by the subroutine nvtvv h1 which calls
subroutines rattle r, rattle v and nvtscale.

2.5.4.2 Berendsen Thermostat

In the Berendsen algorithm the instantaneous temperature is pushed towards the desired
temperature by scaling the velocities at each step:

χ(t) ←
[
1 +

∆t

τT

(
Text

T (t)
− 1

)]1/2

(2.218)

c©CCLRC 62

The DL POLY 2 LF routines implement this thermostat as follows.

v(t +
1
2
∆t) ←

[
v(t− 1

2
∆t) + ∆t

f(t)
m

]
χ(t)

v(t) ← 1
2

[
v(t− 1

2
∆t) + v(t +

1
2
∆t)

]

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t) (2.219)

As with the Nosé-Hoover thermostat iteration is required to obtain self consistency of χ(t),
v(t) and T (t), although it should be noted χ has different roles in the two thermostats.
The Berendsen algorithm conserves total momentum but not energy. Here again the pres-
ence of constraint bonds requires an additional iteration with one application of SHAKE
corrections. The algorithm is implemented in the DL POLY routine nvt b1, for systems
including bond constraints.

The VV implementation of Berendsen’s algorithm proceeds as folows:

v(t +
1
2
∆t) ← v(t) +

∆t

2
f(t)
m

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t)

call rattle(R)

v′(t + ∆t) ← v(t +
1
2
∆t) +

∆t

2
f(t + ∆t)

m
call rattle(V)

χ ←
[
1 +

∆t

τT

(T
Text

− 1
)]1/2

v(t + ∆t) ← χ v′(t + ∆t) (2.220)

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae
(2.210) and (2.211) respectively. The integration is performed by the subroutine nvtvv b1
which calls subroutines rattle r and rattle v.

2.5.5 Gaussian Constraints

Kinetic temperature can be made a constant of the equations of motion by imposing an
additional constraint on the system. If one writes the equations of motions as :

dr(t)
dt

= v(t)

dv(t)
dt

=
f(t)
m

− χ(t)v(t) (2.221)

(2.222)

c©CCLRC 63

with the temperature constraint

dT
dt

∝ d

dt

(∑

i

(mivi)2
)
∝

∑

i

m2
i vi(t) · f i

(t) = 0 (2.223)

then choosing

χ =
∑

i mivi(t).f i
(t)

∑
i m

2
i v

2
i (t)

(2.224)

minimizes the “least squares” differences between the Newtonian and constrained trajecto-
ries.

Following Brown and Clarke [37] the algorithm is implemented in the LF scheme by
calculating η = 1/(1 + χ∆t/2)

η ←
√

Text

T

v(t +
1
2
∆t) ← (2η − 1)v(t− 1

2
∆t) + η∆t

f(t)
m

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t) (2.225)

where T is obtained from standard Verlet leapfrog integration. Only one iteration is needed
(two if the system has bond constraints) to constrain the instantaneous temperature to ex-
actly Text however energy is not conserved by this algorithm. The algorithm is implemented
in the DL POLY routine nvt e1 for systems with bond constraints.

The VV implementation of Evan’s thermostat is as follows

χ(t) ←
∑

i

mivi(t).f i
(t)/

∑

i

m2
i v

2
i (t)

v′(t) ← v(t)− ∆t

2
χ(t)v(t)

v(t +
1
2
∆t) ← v′(t) +

∆t

2
f(t)
m

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t)

call rattle(R)

v′(t + ∆t) ← v(t +
1
2
∆t) +

∆t

2
f(t + ∆t)

m
call rattle(V)

χ(t + ∆t) ←
∑

i

miv
′
i(t + ∆t).f

i
(t + ∆t)/

∑

i

m2
i v
′2
i (t + ∆t)

v(t + ∆t) ← v′(t + ∆t)− ∆t

2
χ(t + ∆t)v′(t + ∆t) (2.226)

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae
(2.210) and (2.211) respectively. The integration is performed by the subroutine nvtvv e1
which calls subroutines rattle r and rattle v.

c©CCLRC 64

2.5.6 Barostats

The size and shape of the simulation cell may be dynamically adjusted by coupling the sys-
tem to a barostat in order to obtain a desired average pressure (Pext) and/or isotropic stress
tensor (σ). DL POLY 2 has two such algorithms: a Hoover barostat and the Berendsen
barostat. Only the former has a well defined conserved quantity.

2.5.6.1 The Hoover Barostat

DL POLY 2 uses the Melchionna modification of the Hoover algorithm [38] in which the
equations of motion couple a Nosé - Hoover thermostat and a barostat.

Cell size variation

For isotropic fluctuations the equations of motion are:

dr(t)
dt

= v(t) + η(r(t)−R0)

dv(t)
dt

=
f(t)
m

− [χ(t) + η(t)] v(t)

dχ(t)
dt

=
NfkB

Q
(T (t)− Text) +

1
Q

(Wη(t)2 − kBText)

dη(t)
dt

=
3
W

V (t)(P(t)− Pext)− χ(t)η(t)

dV (t)
dt

= [3η(t)]V (t) (2.227)

where Q = NfkBTextτ
2
T is the effective ‘mass’ of the thermostat and W = NfkBTextτ

2
P

is the effective ‘mass’ of the barostat. Nf is the number of degrees of freedom, η is the
barostat friction coefficient, R0 the system centre of mass, τT and τP are specified time
constants for temperature and pressure fluctuations respectively, P(t) is the instantaneous
pressure and V the system volume.

The conserved quantity is, to within a constant, the Gibbs free energy of the system:

HNPT = U + KE + PextV (t) +
1
2
Qχ(t)2 +

1
2
Wη(t)2 +

∫ t

o
(
Q

τ2
T

χ(s) + kBText)ds (2.228)

The algorithm is readily implemented in the LF scheme as:

χ(t +
1
2
∆t) ← χ(t− 1

2
∆t) +

∆tNfkB

Q
(T (t)− Text) +

∆t

Q
(Wη(t)2 − kBText)

χ(t) ← 1
2

[
χ(t− 1

2
∆t) + χ(t +

1
2
∆t)

]

η(t +
1
2
∆t) ← η(t− 1

2
∆t) + ∆t

{
3V (t)

W
(P(t)− Pext)− χ(t)η(t)

}

η(t) ← 1
2

[
η(t− 1

2
∆t) + η(t +

1
2
∆t)

]

c©CCLRC 65

v(t +
1
2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)
m

− [χ(t) + η(t)] v(t)

]

v(t) ← 1
2

[
v(t− 1

2
∆t) + v(t +

1
2
∆t)

]

r(t + ∆t) ← r(t) + ∆t

(
v(t +

1
2
∆t) + η(t +

1
2
∆t)

[
r(t +

1
2
∆t)−R0

])

r(t +
1
2
∆t) ← 1

2
[r(t) + r(t + ∆t)] (2.229)

Like the LF Nosé-Hoover thermostat, several iterations are required to obtain self consis-
tency. DL POLY 2 uses 4 iterations (5 if bond constraints are present) with the standard
Verlet leapfrog predictions for the initial estimates of T (t), P(t), v(t) and r(t+ 1

2∆t). Note
also that the change in box size requires the SHAKE algorithm to be called each iteration
with the new cell vectors and volume obtained from:

V (t + ∆t) ← V (t) exp
[
3∆t η(t +

1
2
∆t)

]

H(t + ∆t) ← exp
[
∆t η(t +

1
2
∆t)

]
H(t) (2.230)

where H is the cell matrix whose columns are the three cell vectors a, b, c.
The isotropic changes to cell volume are implemented in the DL POLY LF routine

npt h1 which allows for systems containing bond constraints.
The implementation in the VV algorithm follows the scheme:

χ(t +
1
2
∆t) ← χ(t) +

∆tNfkB

2Q
(T (t)− Text) +

∆t

2Q
(Wη(t)2 − kBText)

v′(t) ← v(t)− ∆t

2
χ(t +

1
2
∆t)v(t)

η(t +
1
2
∆t) ← η(t) +

∆t

2

{
3V (t)

W
(P(t)− Pext)− χ(t)η(t)

}

v′′(t) ← v′(t)− ∆t

2
η(t +

1
2
∆t)v′(t)

v(t +
1
2
∆t) ← v′′(t) +

∆t

2
f(t)
m

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t)

call rattle(R)

V (t + ∆t) ← V (t) exp
[
3∆t η(t +

1
2
∆t)

]

H(t + ∆t) ← exp
[
∆t η(t +

1
2
∆t)

]
H(t)

v′(t + ∆t) ← v(t +
1
2
∆t) +

∆t

2
f(t + ∆t)

m

c©CCLRC 66

call rattle(V)

η(t + ∆t) ← η(t +
1
2
∆t) +

∆t

2

{
V (t + ∆t)

W
(P(t + ∆t)− Pext)− χ(t + ∆t)η(t + ∆t)

}

v′′(t + ∆t) ← v′(t + ∆t)− ∆t

2
η(t + ∆t)v′(t + ∆t)

χ(t + ∆t) ← χ(t +
1
2
∆t) +

∆tNfkB

2Q
(T (t + ∆t)− Text) +

∆t

2Q
(Wη(t + ∆t)2 − kBText)

v(t + ∆t) ← v′′(t + ∆t) +
∆t

2
χ(t + ∆t)v′′(t + ∆t) (2.231)

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae
(2.210) and (2.211) respectively. The equations have the same conserved variable (HNPT)
as the LF scheme. The integration is performed by the subroutine nvtvv h1 which calls
subroutines rattle r, rattle v, nptscale t and nptscale p.

Cell size and shape variation

The isotropic algorithms may be extended to allowing the cell shape to vary by defining
η as a tensor, η.

The LF equations of motion are implemented as:

χ(t +
1
2
∆t) ← χ(t− 1

2
∆t) +

∆tNfkB

Q
(T (t)− Text) +

∆t

Q
(WTr(η(t))2 − 9kBText)

χ(t) ← 1
2

[
χ(t− 1

2
∆t) + χ(t +

1
2
∆t)

]

η(t +
1
2
∆t) ← η(t− 1

2
∆t) +

∆tV (t)
W

(
σ(t)− Pext1

)
− χ(t)Tr(η(t))

η(t) ← 1
2

[
η(t− 1

2
∆t) + η(t +

1
2
∆t)

]

v(t +
1
2
∆t) ← v(t− 1

2
∆t) + ∆t

[
f(t)
m

−
[
χ(t)1 + η(t)

]
v(t)

]

v(t) ← 1
2

[
v(t− 1

2
∆t) + v(t +

1
2
∆t)

]

r(t + ∆t) ← r(t) + ∆t

(
v(t +

1
2
∆t) + η(t +

1
2
∆t)

[
r(t +

1
2
∆t)−R0

])

r(t +
1
2
∆t) ← 1

2
[r(t) + r(t + ∆t)] (2.232)

where 1 is the identity matrix and σ the pressure tensor. The new cell vectors are calculated
from

H(t + ∆t) ← exp
[
∆t η(t +

1
2
∆t)

]
H(t) (2.233)

DL POLY 2 uses a power series expansion truncated at the quadratic term to approximate
the exponential of the tensorial term. The new volume is found from

V (t + ∆t) ← V (t) exp
[
∆t T r(η)

]
(2.234)

c©CCLRC 67

The conserved quantity is

HNST = U +KE +PextV (t)+
1
2
Qχ(t)2 +

1
2
WTr(η(t))2 +

∫ t

o
(
Q

τ2
T

χ(s)+9kBText)ds (2.235)

This algorithm is implemented in the routine nst h1, with bond constraints.
The VV version of this algorithm is implemented as:

χ(t +
1
2
∆t) ← χ(t) +

∆tNfkB

2Q
(T (t)− Text) +

∆t

2Q
(WTr(η(t))2 − 9kBText)

v′(t) ← v(t)− ∆t

2
χ(t +

1
2
∆t)v(t)

η(t +
1
2
∆t) ← η(t) +

∆t

2

{
V (t)
W

(σ(t)− Pext1)− χ(t)Tr(η(t))
}

v′′(t) ← v′(t)− ∆t

2
η(t +

1
2
∆t)v′(t)

v(t +
1
2
∆t) ← v′′(t) +

∆t

2
f(t)
m

r(t + ∆t) ← r(t) + ∆t v(t +
1
2
∆t)

call rattle(R)

V (t + ∆t) ← V (t) exp
[
3∆t η(t +

1
2
∆t)

]

H(t + ∆t) ← exp
[
∆t η(t +

1
2
∆t)

]
H(t)

v′(t + ∆t) ← v(t +
1
2
∆t) +

∆t

2
f(t + ∆t)

m
call rattle(V)

η(t + ∆t) ← η(t +
1
2
∆t) +

∆t

2

{
V (t + ∆t)

W
(η(t + ∆t)− Pext1)− χ(t + ∆t)Tr(η(t + ∆t))

}

v′′(t + ∆t) ← v′(t + ∆t)− ∆t

2
η(t + ∆t)v′(t + ∆t)

χ(t + ∆t) ← χ(t +
1
2
∆t) +

∆tNfkB

2Q
(T (t + ∆t)− Text) +

∆t

2Q
(WTr(η(t + ∆t))2 − 9kBText)

v(t + ∆t) ← v′′(t + ∆t) +
∆t

2
χ(t + ∆t)v′′(t + ∆t) (2.236)

Routines rattle(R) and rattle(V) apply the bondlength and velocity constraint formulae
(2.210) and (2.211) respectively. The equations have the same conserved variable (HNST)
as the LF scheme. The integration is performed by the subroutine nvtvv h1 which calls
subroutines rattle r, rattle v, nstscale t and nstscale p.

c©CCLRC 68

2.5.6.2 Berendsen Barostat

With the Berendsen barostat the system is made to obey the equation of motion

dP
dt

= (Pext −P)/τP (2.237)

Cell size variations

In the isotropic implementation, at each step the MD cell volume is scaled by by a
factor η and the coordinates, and cell vectors, by η1/3 where

η = 1− β∆t

τP
(Pext − P) (2.238)

and β is the isothermal compressibility of the system. The Berendesen thermostat is applied
at the same time. In practice β is a specified constant which DL POLY 2 takes to be the
isothermal compressibility of liquid water. The exact value is not critical to the algorithm
as it relies on the ratio τP /β. τP is specified by the user.

The LF version of this algorithm is implemented in npt b1 with 4 or 5 iterations used
to obtain self consistency in the v(t). It calls rdshake 1 to handle constraints. The
VV version is implemented in subroutine nvtvv b1, which calls constraint subroutines
rattle r and rattle v.

Cell size and shape variations

The extension of the isotropic algorithm to anisotropic cell variations is straightforward.
The tensor η is defined by

η = 1− β∆t

τP
(Pext1− σ) (2.239)

and the new cell vectors given by

H(t + ∆t) ← ηH(t) (2.240)

As in the isotropic case the Berendsen thermostat is applied simultaneously and 4 or 5
iterations are used to obtain convergence. The LF version of the algorithm is implemented
in subroutine nst b1 and the VV version in nstvv b1. The former calls rdshake 1 to
handle constraints and the latter calls subroutines rattle r and rattle v.

2.5.7 Rigid Bodies and Rotational Integration Algorithms

2.5.7.1 Description of Rigid Body Units

A rigid body unit is a collection of point atoms whose local geometry is time invariant.
One way to enforce this in a simulation is to impose a sufficient number of bond constraints
between the atoms in the unit. However, in many cases this is may be either problematic
or impossible. Examples in which it is impossible to specify sufficient bond constraints are

c©CCLRC 69

1. linear molecules with more than 2 atoms (e.g. CO2)

2. planar molecules with more than three atoms (e.g. benzene).

Even when the structure can be defined by bond constraints the network of bonds produced
may be problematic. Normally, they make the iterative SHAKE procedure slow, particu-
larly if a ring of constraints is involved (as occurs when one defines water as a constrained
triangle). It is also possible, inadvertently, to over constrain a molecule (e.g. by defining a
methane tetrahedron to have 10 rather than 9 bond constraints) in which case the SHAKE
procedure will become unstable. In addition, massless sites (e.g. charge sites) cannot be
included in a simple constraint approach making modelling with potentials such as TIP4P
water impossible.

All these problems may be circumvented by defining rigid body units, the dynamics
of which may be described in terms of the translational motion of the center of mass
(COM) and rotation about the COM. To do this we need to define the appropriate variables
describing the position, orientation and inertia of a rigid body, and the rigid body equations
of motion. 5

The mass of a rigid unit M is the sum of the atomic masses in that unit:

M =
Nsites∑

j=1

mj . (2.241)

where mj is the mass of an atom and the sum includes all sites (Nsites) in the body. The
position of the rigid unit is defined as the location of its centre of mass R:

R =
1
M

Nsites∑

j=1

mjrj , (2.242)

where rj is the position vector of atom j. The rigid body translational velocity V is defined
by:

V =
1
M

Nsites∑

j=1

mjvj , (2.243)

where vj is the velocity of atom j. The net translational force acting on the rigid body unit
is the vector sum of the forces acting on the atoms of the body:

F =
Nsites∑

j=1

f
j

(2.244)

where f
j

is the force on a rigid unit site

5An alternative approach is to define “basic” and “secondary” particles. The basic particles are the
minimun number needed to define a local body axis system. The remaining particle positions are expressed
in terms of the COM and the basic particles. Ordinary bond constraints can then be applied to the basic
particles provided the forces and torques arising from the secondary particles are transferred to the basic
particles in a physically meaningful way.

c©CCLRC 70

A rigid body also has associated with it a rotational inertia matrix I, whose components
are given by

Iαβ =
Nsites∑

j

mj(d2
jδαβ − dα

j rβ
j) (2.245)

where dj is the displacement vector of the atom j from the COM, and is given by:

dj = rj −R. (2.246)

It is common practice in the treatment of rigid body motion to define the position R
of the body in a universal frame of reference (the so called laboratory or inertial frame),
but to describe the moment of inertia tensor in a frame of reference that is localised in
the rigid body and changes as the rigid body rotates. Thus the local body frame is taken
to be that in which the rotational inertia tensor Î is diagonal and the components satisfy
Ixx ≥ Iyy ≥ Izz. In this local frame (the so called Principal Frame) the inertia tensor is
therefore constant.

The orientation of the local body frame with respect to the space fixed frame is described
via a four dimensional unit vector, the quaternion

q = [q0, q1, q2, q3]T , (2.247)

and the rotational matrix R to transform from the local body frame to the space fixed
frame is the unitary matrix

R =




q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3


 (2.248)

so that if d̂j is the position of an atom in the local body frame (with respect to its COM),
its position in the universal frame (w.r.t. its COM) is given by

dj = R d̂j (2.249)

With these variables defined we can now consider the equations of motion for the rigid body
unit.

2.5.7.2 Integration of the Rigid Body Equations of Motion

The equations of translational motion of a rigid body are the same as those describing the
motion of a single atom, except that the force is the total force acting on the rigid body
i.e. F in equation (2.244) and the mass is the total mass of the rigid body unit i.e. M
in equation (2.241). These equations can be integrated by the standard Verlet LF or VV
algorithms described in the previous sections. Thus we need only consider the rotational
motion here.

The rotational equation of motion for a rigid body is

τ =
d

dt
J =

d

dt

(
Iω

)
, (2.250)

c©CCLRC 71

in which J is the angular momentum of the rigid body defined by the expression

J =
Nsites∑

j=1

mjdj × vj , (2.251)

and ω is the angular velocity.
The vector τ is the torque acting on the body in the universal frame and is given by

τ =
Nsites∑

j=1

dj × f
j
. (2.252)

The rotational equations of motion, written in the local frame of the rigid body, are
given by Euler’s equations

˙̂ωx =
τx

Îxx

+ (Îyy − Îzz)ω̂yω̂z

˙̂ωy =
τy

Îyy

+ (Îzz − Îxx)ω̂zω̂z (2.253)

˙̂ωy =
τz

Îzz

+ (Îxx − Îyy)ω̂xω̂y

The vector ω̂ is the angular velocity transformed to the local body frame. Integration of ω̂
is complicated by the fact that as the rigid body rotates , so does the local reference frame.
So is is necessary to integrate equations (2.253) simultaneously with an integration of the
quaternions describing the orientiation of the rigid body. The equation describing this is:




q̇0

q̇1

q̇2

q̇3


 =

1
2




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0







0
ω̂x

ω̂y

ω̂z


 (2.254)

Rotational motion in DL POLY 2 is handled by two different methods. For LF im-
plementation, the Fincham Implicit Quaternion Algorithm (FIQA) is used [14]. The VV
implementation uses the NOSQUISH algorithm of Miller et al. [15].

The LF implementation begins by integrating the angular velocity equation in the local
frame.

ω̂(t +
∆t

2
) = ω̂(t− ∆t

2
) + ∆t Î

−1
τ̂(t) (2.255)

The new quaternions are found using the FIQA algorithm. In this algorithm the new
quaternions are found by solving the implicit equation

q(t + ∆t) = q(t) +
∆t

2

(
Q[q(t)]ŵ(t) + Q[q(t + ∆t)]ŵ(t + ∆t)

)
(2.256)

c©CCLRC 72

where ŵ = [0, ω̂]T and Q[q] is

Q =
1
2




q0 −q1 −q2 −q3

q1 q0 −q3 −q2

q2 q3 q0 −q1

q3 −q2 q1 q0


 (2.257)

The above equation is solved iteratively with

q(t + ∆t) = q(t) + ∆t Q[q(t)]ŵ(t) (2.258)

as the first guess. Typically no more than 3 or 4 iterations are needed for convergence. At
each step the constraint

‖q(t + ∆t)‖ = 1 (2.259)

is imposed.
The NVE LF algorithm is implemented in nveq 1 which allows for a system containing

a mixture of rigid bodies and atomistic species, provided the rigid bodies are not linked to
other species by constraint bonds.

The VV implementation is based on the NOSQUISH algorithm of Miller et al. [15]. In
addition to the quaternions it requires quaternion momenta defined by




p0

p1

p2

p3


 = 2




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0







0
Îxxω̂x

Îyyω̂y

Îzzω̂z


 (2.260)

and quaternion torques defined by



Υ0

Υ1

Υ2

Υ3


 = 2




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0







0
τ̂x

τ̂y

τ̂z


 (2.261)

(It should be noted that vectors p and Υ are 4-component vectors.) The quaternion mo-
menta are first updated a half-step using the formula

p(t +
∆t

2
) ← p(t) +

∆t

2
Υ(t) (2.262)

Next a sequence of operations is applied to the quaternions and the quaternion momenta
in the order

eiL3(δt/2)eiL2(δt/2)eiL1(δt)eiL2(δt/2)eiL3(δt/2) (2.263)

which preserves the symplecticness of the operations (see reference [17]). Note that δt
is some submultiple of ∆t. (In DL POLY 2 the default is ∆t = 10δt.) The operators
themselves are of the following kind:

eiL(δt)q = cos(ζkδt)q + sin(ζkδt)Pkq

eiL(δt)p = cos(ζkδt)p + sin(ζkδt)Pkp (2.264)

c©CCLRC 73

where Pk is a permutation operator with k = 0, . . . , 3 with the following properties

P0q = {q0, q1, q2, q3}
P1q = {−q1, q0, q3,−q2}
P2q = {−q2,−q3, q0, q1}
P3q = {−q3, q2,−q1, q0} (2.265)

and the angular velocity ζk is defined as

ζk =
1

4Ik
pT Pkq. (2.266)

Equations (2.263) to (2.265) represent the heart of the NOSQUISH algorithm and are
repeatedly applied (10 times in DL POLY 2). The final result is the quaternion updated
to the full timestep value i.e. q(t + ∆t). These equations form part of the first stage of the
VV algorithm.

In the second stage of the VV algorithm, new torques are used to update the quaternion
momenta to a full timestep.

p(t + ∆t) ← p(t +
∆t

2
) +

∆t

2
Υ(t + ∆t) (2.267)

The NVE implementation of this algorithm is in the subroutine nveqvv 1 which calls
the nosquish subroutine to perform the rotation operation. The subroutine also calls
rattle r and rattle v to handle any rigid bonds which may be present.

Thermostats and Barostats

It is straightforward to couple the rigid body equations of motion to a thermostat
and/or barostat. The thermostat is coupled to both the translational and rotational degrees
of freedom and so both the translational and rotational velocities are propagated in an
analogous manner to the thermostated atomic velocities. The barostat, however, is coupled
only to the translational degrees of freedom and not to the rotation.DL POLY 2 supports
both Hoover and Berendsen thermostats and barostats for systems containing rigid bodies.

For LF integration the Hoover thermostat is implemented in nvtq h1, the Hoover
isotropic barostat (plus thermostat) in nptq h1 and the anisotropic barostat in nstq h1.
The analogous routines for the Berendsen algorithms are nvtq b1, nptq b1 and nstq b1.
These subroutines also call rdshake 1 to handle any rigid bonds which may be present.

For VV integration the Hoover thermostat is implemented in nvtqvv h1 (nvtqscl) ,
the Hoover isotropic barostat (plus thermostat) in nptqvv h1 (nptqscl t, nptqscl p)
and the anisotropic barostat in nstqvv h1 (nstqscl t, nstqscl p). The analogous
routines for the Berendsen algorithms are nvtqvv b1, nptqvv b1 and nstqvv b1. (The
subroutines in brackets represent supporting subroutines.) These subroutines also call
rattle r and rattle v to handle any rigid bonds which may be present.

c©CCLRC 74

2.5.7.3 Linked Rigid Bodies

The above integration algorithms can be used for rigid bodies in systems containing “atomic”
species (whose equations of motion are integrated with the standard leapfrog algorithm).
These rigid bodies may even be linked to other species (including other rigid bodies) by
extensible bonds. However if a rigid body is linked to an atom or another rigid body by a
bond constraint the above algorithms are not adequate. The reason is that the constraint
will introduce an additional force and torque on the body that can only be found after the
integration of the unconstrained unit. DL POLY 2 has a suite of integration algorithms
to cope with this situation in which both the constraint conditions and the quaternion
equations are solved similtaneously using an extension of the SHAKE algorithm called
“QSHAKE” [16]. It has been cast in both LF and VV forms. We will describe here how it
works for VV, the LF version is decribed in [16].

Firstly we assume a rigid body (A) is connected to another (B) at timestep tn = n∆t
via bonds between atoms at positions rn

Ap and rn
Bp given by

rn
Ap = Rn

A + dn
Ap

rn
Ap = Rn

B + dn
Bp (2.268)

where R represents the rigid body COM and d the displacement of the atom from the
relevant COM. The subscript p indicates that these are the atoms providing the links.

In the first stage of the VV QSHAKE algorithm, the rigid bodies are allowed to move
unrestricted. Our task is then to find the the constraint force Gn

AB which would preserve
the constraint bondlength i.e. dn

ABp = dn+1
ABp. Assuming we know this force we can write:

Rn+1
A = R̃

n+1
A +

∆t2

2MA
Gn

AB (2.269)

in which the tilde x̃ indicates the corresponding variable computed in the absence of the
constraint force. (For brevity, in this and subsequent equations we leave out corresponding
equations for body B.)

We can also write the true torque at timestep tn (i.e. τn) as

τn = τ̃n + dn
Ap ×Gn

AB. (2.270)

It may be easily shown from this and equation (2.250) that

ω̇n
A = ˙̃ω

n
A +

(
In

)−1 (
dn

Ap ×Gn
AB

)
(2.271)

from which it follows that

dn+1
Ap = d̃

n+1
Ap +

∆t2

2
gn
ABUn

A × dn
Ap (2.272)

where we have defined
Un

A =
(
In
A

)−1 (
dn

Ap × dn
ABp

)
(2.273)

c©CCLRC 75

and we have used the identity
Gn

AB = gn
ABdn

ABp

where gn
AB is a scalar quantity. Now, the true position (at timestep tn+1) of the link atom

on rigid body A is
rn+1
Ap = Rn+1

A + dn+1
Ap (2.274)

and inserting (2.269) and (2.272) leads to

rn+1
Ap = R̃

n+1
A + d̃

n+1
Ap + gn

AB

∆t2

2
ΘA (2.275)

where

ΘA =

(
dn

ABp

MA
+ Un

A × dn
Ap

)
. (2.276)

Since dn+1
ABp = rn+1

Ap − rn+1
Bp we can easily obtain

dn+1
ABp = d̃

n+1
ABp + gn

AB

∆t2

2
(ΘA −ΘB) (2.277)

Squaring both sides and neglecting terms of order higher than O(∆t2) gives after rearrange-
ment:

gn
AB ≈ (dn+1

ABp)
2 − (d̃n+1

ABp)
2

∆t2d̃
n+1
ABp · (ΘA −ΘB)

(2.278)

From which the constraint force may be calculated. Iteration is necessary as in SHAKE.
In the second stage of QSHAKE we need to calculate another constaint force Hn+1

AB to
preserve the orthogonality of the constraint bond vector and the relative velocity of the two
atoms in the bond. Once again the contraint force implies corrections to the translational
and rotational equations of motion, which, following the methods used above, we write
directly as:

V n+1
A = Ṽ

n+1
A +

∆t

2MA
Hn+1

AB

ωn+1
A = ω̃n

A +
∆t

2
hn+1

AB Un+1
A (2.279)

where hn+1
AB is a scalar related to the constraint force via

Hn+1
AB = hn+1

AB dn+1
ABp

Now, the velocity of the linked atom on molecule A is:

vn+1
Ap = V n+1

A + ωn+1
A × dn+1

Ap (2.280)

which on substitution of the above equations gives:

vn+1
Ap = ṽn+1

Ap +
∆t

2
hn+1

AB Ωn+1
A (2.281)

c©CCLRC 76

where

Ωn+1
A =

(
dn+1

ABp

MA
+ Un+1

A

)
. (2.282)

The constraint condition requires that

dn+1
ABp · (vn+1

Ap − vn+1
Bp) = 0 (2.283)

and substitution of the equation for vn+1
Ap (and the equivalent for vn+1

Bp) leads directly to

hn+1
AB = −2dn+1

ABp · (ṽn+1
Ap − ṽn+1

Bp)

∆tdn+1
ABp · (ΩA − ΩB)

(2.284)

which provides the correction for second constraint. This again requires iteration.
The VV QSHAKE algorithm is implemented in DL POLY 2 in subroutine nveqvv 2

with the QSHAKE constraint forces calculated in qrattle r and qrattle v. Again it
is straightforward to couple these systems to a Hoover or Berendsen thermostat and/or
barostat. The Hoover and Berendsen thermostated versions are found in nvtqvv h2 and
nvtqvv b2 respectively. The isotropic constant pressure implementations are found in
nptqvv h2 and nptqvv b2, while the anisotropic constant pressure routines are found in
nstqvv h2 and nstqvv b2. The Hoover versions make use of the thermostat and barostat
routines nvtqscl, nptqscl t, nptqscl p, nstqscl t and nstqscl p according to the
ensemble.

The LF QSHAKE algorithm is implemented in nveq 2 with the QSHAKE constraint
forces applied in qshake. This also has different ensemble versions: Hoover or Berendsen
thermostat and/or barostat. The Hoover and Berendsen thermostated versions are found
in nvtq h2 and nvtq b2 respectively. The isotropic constant pressure implementations
are found in nptq h2 and nptq b2, while the anisotropic constant pressure routines are
found in nstq h2 and nstq b2.

An outline of the parallel version of QSHAKE is given in section 2.6.9.

2.5.8 The DL POLY 2 Multiple Timestep Algorithm

For simulations employing a large spherical cutoff rcut in the calculation of the interactions
DL POLY 2 offers the possibility of using a multiple timestep algorithm to improve the
efficiency. The method is based on that described by Streett et al [39, 40] with extension
to Coulombic systems by Forester et al [41].

In the multiple timestep algorithm there are two cutoffs for the pair interactions: a
relatively large cutoff (rcut) which is used to define the standard Verlet neighbour list;
and a smaller cutoff rprim which is used to define a primary list within the larger cutoff
sphere (see figure). Forces derived from atoms in the primary list are generally much
larger than those derived from remaining (so-called secondary) atoms in the neighbour list.
Good energy conservation is therefore possible if the forces derived from the primary atoms
are calculated every timstep, while those from the secondary atoms are calculated much
less frequently, and are merely extrapolated over the interval. DL POLY 2 handles this
procedure as follows.

c©CCLRC 77

DL POLY 2 updates the Verlet neighbour list at irregular intervals, determined by the
movement of atoms in the neighbour list (see section 2.1). The interval between updates
is usually of the order of ∼20 timesteps. Partitioning the Verlet list into primary and
secondary atoms always occurs when the Verlet list is updated, and thereafter at intervals
of multt timesteps (i.e. the multi-step interval specified by the user - see section 4.1.1).
Immediately after the partitioning, the force contributions from both the primary and
secondary atoms are calculated. The forces are again calculated in total in the subsequent
timestep. Thereafter, for multt-2 timesteps, the forces derived from the primary atoms
are calculated explicitly, while those derived from the secondary atoms are calculated by
linear extrapolation of the exact forces obtained in the first two timesteps of the multi-step
interval. It is readily apparent how this scheme can lead to a significant saving in execution
time.

Extension of this basic idea to simulations using the Ewald sum requires the following:

1. the reciprocal space terms are calculated only for the first two timesteps of the multi-
step,

2. the contribution to the reciprocal space terms arising from primary interactions are
immediately subtracted, leaving only the long-range components. (This is done in
real space, by subtracting erf terms.);

3. the real space Coulombic forces arising from the secondary atoms are calculated in
the first two timesteps of the multi-step using the normal Ewald expressions (i.e. the
erfc terms).

4. the Coulombic forces arising from primary atoms are calculated at every timestep in
real space assuming the full Coulombic force;

In this way the Coulombic forces can be handled by the same multiple timestep scheme as
the van der Waals forces. The algorithm is described in detail in [41].

Note that the accuracy of the algorithm is a function of the multi-step interval multt,
and decreases as multt increases. Also, the algorithm is not time reversible and is therefore
susceptible to energy drift. Its use with a thermostat is therefore advised.

c©CCLRC 78

r
prim

r
cut

The multiple timestep algorithm
The atoms surrounding the central atom (open circle) are classified as primary if they

occur within a radius rprim and secondary if outside this radius but within rcut. Interactions
arising from primary atoms are evaluated every timestep. Interactions from secondary
atoms are calculated exactly for the first two steps of a multi-step and by extrapolation
afterwards.

2.6 DL POLY Parallelisation

DL POLY 2 is a distributed parallel molecular dynamics package based on the Replicated
Data parallelisation strategy [42, 43]. In this section we briefly outline the basic method-
ology. Users wishing to add new features DL POLY 2 will need to be familiar with the
underlying techniques as they are described (in greater detail) in references [30, 43]).

2.6.1 The Replicated Data Strategy

The Replicated Data (RD) strategy [42] is one of several ways to achieve parallelisation
in MD. Its name derives from the replication of the configuration data on each node of a
parallel computer (i.e. the arrays defining the atomic coordinates ri, velocities vi and forces
f

i
, for all N atoms {i : i = 1, . . . , N} in the simulated system, are reproduced on every

processing node). In this strategy most of the forces computation and integration of the
equations of motion can be shared easily and equally between nodes and to a large extent
be processed independently on each node. The method is relatively simple to program and
is reasonably efficient. Moreover, it can be “collapsed” to run on a single processor very
easily. However the strategy can be expensive in memory and have high communication
overheads, but overall it has proven to be successful over a wide range of applications.
These issues are explored in more detail in [42, 43].

Systems containing complex molecules present several difficulties. They often contain
ionic species, which usually require Ewald summation methods [11, 44], and intra-molecular

c©CCLRC 79

interactions in addition to inter-molecular forces. These are handled easily in the RD
strategy, though the SHAKE algorithm [12] requires significant modification [30].

The RD strategy is applied to complex molecular systems as follows:

1. Using the known atomic coordinates ri, each node calculates a subset of the forces
acting between the atoms. These are usually comprised of:

(a) atom-atom pair forces (e.g. Lennard Jones, Coulombic etc.);

(b) non-rigid atom-atom bonds;

(c) valence angle forces;

(d) dihedral angle forces;

(e) improper dihedral angle forces.

2. The computed forces are accumulated in (incomplete) atomic force arrays f
i

inde-
pendently on each node;

3. The atomic force arrays are summed globally over all nodes;

4. The complete force arrays are used to update the atomic velocities and positions.

It is important to note that load balancing (i.e. equal and concurrent use of all processors)
is an essential requirement of the overall algorithm. In DL POLY 2 this is accomplished
for the pair forces with an adaptation of the Brode-Ahlrichs scheme [22].

2.6.2 Distributing the Intramolecular Bonded Terms

DL POLY 2 handles the intramolecular in which the atoms involved in any given bond
term are explicitly listed. Distribution of the forces calculations is accomplished by the
following scheme:

1. Every atom in the simulated system is assigned a unique index number from 1 to N ;

2. Every intramolecular bonded term Utype in the system has a unique index number
itype: from 1 to Ntype where type represents a bond, angle or dihedral.

3. A pointer array keytype(ntype, itype) carries the indices of the specific atoms involved
in the potential term labelled itype. The dimension ntype will be 2, 3 or 4, if the term
represents a bond, angle or dihedral.

4. The array keytype(ntype, itype) is used to identify the atoms in a bonded term and
the appropriate form of interaction and thus to calculate the energy and forces. Each
processor is assigned the independent task of evaluating a block of (Int(Ntotal/Nnodes))
interactions.

The same scheme works for all types of bonded interactions. The global summation of
the force arrays does not occur until all the force contributions, including nonbonded forces
has been completed.

c©CCLRC 80

2.6.3 Distributing the Nonbonded Terms

In DL POLY 2 the nonbonded interactions are handled with a Verlet neighbour list [11]
which is reconstructed at intervals during the simulation. This list records the indices of all
‘secondary’ atoms within a certain radius of each ‘primary’ atom; the radius being the cut-
off radius (rcut) normally applied to the nonbonded potential function, plus an additional
increment (∆rcut). The larger radius (rcut + ∆rcut) permits the same list to be used for
several timesteps without requiring an update. The frequency at which the list must be
updated clearly depends on the thickness of the region ∆rcut. In RD, the neighbour list is
constructed simultaneously on each node and in such a way as to share the total burden of
the work equally between nodes. Each node is responsible for a unique set of nonbonded
interactions and the neighbour list is therefore different on each node. DL POLY 2 uses
a method based on the Brode-Ahlrichs scheme [22] (see figure below) to construct the
neighbour list.

Additional modifications are necessary to handle the excluded atoms [43]. A distributed
excluded atoms list is constructed by DL POLY 2 at the start of the simulation. The list
is constructed so that the excluded atoms are referenced in the same order as they would
appear in the Verlet neighbour list if the bonded interactions were ignored, allowing for the
distributed structure of the neighbour list.

c©CCLRC 81

Brode Ahlrichs Algorithm

1,2 1,3 1,4 1,5 1,6 1,7

2,3 2,4 2,5 2,6 2,7 2,8

3,4 3,5 3,6 3,7 3,8 3,9

4,5 4,6 4,7 4,8 4,9 4,10

5,6 5,7 5,8 5,9 5,10 5,11

6,7 6,8 6,9 6,10 6,11 6,12

7,8 7,9 7,10 7,11 7,12

8,9 8,10 8,11 8,12 8,1

9,10 9,11 9,12 9,1 9,2

10,11 10,12 10,1 10,2 10,3

11,12 11,1 11,2 11,3 11,4

12,1 12,2 12,3 12,4 12,5

12 Atoms, 4 processors

Processor 0

Schematic diagram of the parallel implementation of the Brode-Ahlrichs algorithm.
The diagram illustrates the reordering of the upper triangular matrix of n(n-1)/2 pair

interactions so that the rows of the matrix are of approximately equally length. Each entry
in the table consists of a primary atom index (constant within a row) and a “neighbouring”
atom index. Rows are assigned sequentially to nodes. In the diagram node 0 deals with
rows 1, 5 and 9, node 1 to rows 2, 6, and 10 etc.

When a charge group scheme (as opposed to an atomistic scheme) is used for the
non-bonded terms, the group-group interactions are distributed using the Brode-Ahlrichs
approach. This makes the Verlet list considerably smaller, thus saving memory, but also
results in a more “coarse grain” parallelism. The consequence of which is that performance
with a large number of processors will degrade more quickly than with the atomistic scheme.

Once the neighbour list has been constructed, each node of the parallel computer may
proceed independently to calculate the pair force contributions to the atomic forces.

2.6.4 Modifications for the Ewald Sum

For systems with periodic boundary conditions DL POLY 2 employs the Ewald Sum to
calculate the Coulombic interactions (see section 2.4.5).

c©CCLRC 82

Calculation of the real space component in DL POLY 2 employs the algorithm for the
calculation of the nonbonded interactions outlined above. The reciprocal space component
is calculated using the schemes described in [44], in which the calculation can be paral-
lelised by distribution of either k vectors or atomic sites. Distribution over atomic sites
requires the use of a global summation of the qi exp(−ik · rj) terms, but is more efficient in
memory usage. Both strategies are computationally straightforward. Subroutine ewald1
distributes over atomic sites and is often the more efficient of the two approaches. Subrou-
tine ewald1a distributes over the k vectors and may be more efficient on machines with
large communication latencies.

Other routines required to calculate the ewald sum include ewald2, ewald3 and
ewald4. The first of these calculates the real space contribution, the second the self
interaction corrections, and the third is required for the multiple timestep option.

2.6.5 Modifications for SPME

The SPME method requires relatively little modification for parallel computing. The real
space terms are calculated exactly as they are for the normal Ewald sum, as described
above. The reciprocal space sum requires a 3D Fast Fourier Transform (FFT), which
in principle should be distributed over the processors, but in DL POLY 2 the decision
was made to implement a complete 3D FFT on every processor. This is expensive in
memory, and potentially expensive in computer time. However a multi-processor FFT
requires communication between processors and this has significant impact on the famed
efficiency of the FFT. It transpires that a single processor FFT is so efficient that the
adopted strategy is still effective. The charge array that is central to the SPME method
(see section 2.4.6) is however built in a distributed manner and then globally summed prior
to the FFT operation.

2.6.6 Three and Four Body Forces

DL POLY 2 can calculate three/four body interactions of the valence angle type [45]. These
are not dealt with in the same way as the normal nonbonded interactions. They are
generally very short ranged and are most effectively calculated using a link-cell scheme [23].
No reference is made to the Verlet neighbour list nor the excluded atoms list. It follows
that atoms involved in the same three/four-body term can interact via nonbonded (pair)
forces and ionic forces also. The calculation of the three/four-body terms is distributed over
processors on the basis of the identity of the central atom in the bond. A global summation
is required to specify the atomic forces fully.

2.6.7 Metal Potentials

The simulation of metals by DL POLY 2 makes use of density dependent potentials of the
Sutton-Chen type [3]. The dependence on the atomic density presents no difficulty however,
as this class of potentials can be resolved into pair contributions. This permits the use of
the distributed Verlet neighbour list outlined above.

c©CCLRC 83

2.6.8 Summing the Atomic Forces

The final stage in the RD strategy, is the global summation of the atomic force arrays. This
must be done After all the contributions to the atomic forces have been calculated. To do
this DL POLY 2 employs a global summation algorithm [42], which is generally a system
specific utility.

Similarly, the total configuration energy and virial must be obtained as a global sum of
the contributing terms calculated on all nodes.

2.6.9 The SHAKE, RATTLE and Parallel QSHAKE Algorithms

The SHAKE and RATTLE algorithms are methods for constraining rigid bonds. Parallel
adaptations of both are couched in the Replicated Data strategy. The essentials of the
methods are as follows.

1. The bond constraints acting in the simulated system are shared equally between the
processing nodes.

2. Each node makes a list recording which atoms are bonded by constraints it is to
process. Entries are zero if the atom is not bonded.

3. A copy of the array is passed to each other node in turn. The receiving node compares
the incoming list with its own and keeps a record of the shared atoms and the nodes
which share them.

4. In the first stage of the SHAKE algorithm, the atoms are updated through the usual
Verlet algorithm, without regard to the bond constraints.

5. In the second (iterative) stage of SHAKE, each node calculates the incremental cor-
rection vectors for the bonded atoms in its own list of bond constraints. It then sends
specific correction vectors to all neighbours that share the same atoms, using the
information compiled in step 3.

6. When all necessary correction vectors have been received and added the positions of
the constrained atoms are corrected.

7. Steps 5 and 6 are repeated until the bond constraints are converged.

8. After convergence the coordinate arrays on each node are passed to all the other
nodes. The coordinates of atoms that are not in the constraint list of a given node
are taken from the incoming arrays (an operation we term splicing).

9. Finally, the change in the atom positions is used to calculate the atomic velocities.

The above scheme is complete for a implementation based on the leapfrog integration
algorithm. However a velocity Verlet (VV) scheme requires additional steps.

1. Step 9 above does not apply for VV. The velocity is integrated under the normal VV
scheme.

c©CCLRC 84

2. When the velocity is updated, iteration of the constraint force takes place. The incre-
mental changes to the velocity are communicated between nodes sharing constrained
atoms as for the bondlength constraints.

3. Iteration is repeated until the bond constraints are converged.

4. After convergence the velocity arrays on each node are passed to all the other nodes
by splicing.

This scheme contains a number of non-trivial operations, which are described in detail
in [30]. However some general comments are worth making.

The compilation of the list of constrained atoms on each node, and the circulation
of the list (items 1 - 3 above) need only be done once in any given simulation. It also
transpires that in sharing bond contraints between nodes, there is an advantage to keeping
as many of the constraints pertaining to a particular molecule together on one node as is
possible within the requirement for load balancing. This reduces the data that need to
be transferred between nodes during the iteration cycle. It is also advantageous, if the
molecules are small, to adjust the load balancing between processors to prevent shared
atoms. The loss of balance is compensated by the elimination of communications during
the SHAKE cycle. These techniques are exploited by DL POLY 2 .

The QSHAKE algorithm is an extension of the SHAKE algorithm for constraint bonds
between rigid bodies. The parallel strategy is very similar to that of SHAKE. The only
significant difference is that increments to the atomic forces, not the atomic positions, are
passed between processors at the end of each iteration.

Chapter 3

DL POLY 2 Construction and
Execution

85

c©CCLRC 86

Scope of Chapter

This chapter describes how to compile a working version of DL POLY 2 and how to run it.

c©CCLRC 87

3.1 Constructing DL POLY 2 : an Overview

3.1.1 Constructing the Standard Version

DL POLY 2 was designed as a package of useful subroutines rather than a single program,
which means that users are to be able to construct a working simulation program of their
own design from the subroutines available, which is capable of performing a specific simu-
lation. However we recognise that many, perhaps most, users will be content with creating
a standard version that covers all of the possible applications and for this reason we have
provided the necessary tools to assemble such a version. The method of creating the stan-
dard version is described in detail in this chapter, however a brief step-by-step description
follows.

1. DL POLY 2 is supplied as a UNIX compressed tar file. This must uncompressed and
un-tared to create the DL POLY 2 directory (section 1.4).

2. In the build subdirectory you will find the required DL POLY 2 makefile (see section
3.2.1 and Appendix A, where a sample Makefile is listed). This must be copied into
the subdirectory containing the relevant source code. In most cases this will be the
srcf90 subdirectory.

3. The makefile is executed with the appropriate keywords (section 3.2.1) which select for
specific computers and if a parallel machine is used, the appropriate communication
software.

4. The makefile produces the executable version of the code, which as a default will be
named DLPOLY.X and located in the execute subdirectory.

5. DL POLY also has a Java GUI. The files for this are stored in the subdirectory java.
Compilation of this is simple and requires running the javac compiler and the jar
utility. Details for these procedures are provided in the GUI manual [8].

6. To run the executable for the first time you require the files CONTROL, FIELD and
CONFIG (and possibly TABLE if you have tabulated potentials). These must be
present in the directory from which the program is executed. (See section 4.1 for the
description of the input files.)

7. Executing the program will produce the files OUTPUT, REVCON and REVIVE (and
optionally STATIS, HISTORY, RDFDAT and ZDNDAT) in the executing directory.
(See section 4.2 for the description of the output files.)

This simple procedure is enough to create a standard version to run most DL POLY 2
applications. However it sometimes happens that additional modifications may be neces-
sary.

On starting, DL POLY 2 scans the input data and makes an estimate of the sizes of the
arrays it requires to do the simulation. Sometimes the estimates are not good enough. The
most common occurrences of this are NPT and NST simulations, or simulations where the

c©CCLRC 88

local density on the MD cell may significantly exceed the mean density of the cell (systems
with a vaccum gap for example). Under these circmstances arrays initally allocated may
be insufficent. In which case DL POLY 2 may report a memory problem and request that
you recompile the code with hand-adjusted array dimensions. This topic is dealt with more
fully in Appendix C.

3.1.2 Constructing Nonstandard Versions

In constructing a nonstandard DL POLY 2 simulation program, the first requirement is for
the user to write a program to function as the root segment. The srcf90 directory contains
an example of such a root program: dlpoly. This root program calls the major routines
required to perform the simulation and also controls the normal “molecular dynamics cy-
cle” which consists of forces calculation followed by integration of the equation of motion.
dlpoly also monitors the cpu usage and brings about a controlled termination of the pro-
gram if the usage approaches the allotted job time within a pre-set closure time. Lastly,
dlpoly is the routine that first opens the OUTPUT file (section 4.2.2), which provides
the summary of the job. Users are recommended to study the dlpoly root as a model for
other implementations of the package they may wish to construct.

If additional functionality is added to DL POLY 2 by the user, the parset.f subroutine
(and its support subroutines) will need modifying to allow specification of the dimensions
of any new arrays.

Any molecular dynamics simulation performs five different kinds of operation: initial-
isation; forces calculation; integration of the equations of motion; calculation of system
properties; and job termination. It is worth considering these operations in turn and to in-
dicate which DL POLY 2 routines are available to perform them. We do not give a detailed
description, but provide only a guide. The following outline assumes a system containing
flexible molecules held together by rigid bonds, but without rigid bodies.

Initialisation requires firstly that the program determine what kind of parallel machine
it is running on. The routine machine determines how many processing nodes are being
used and also returns the node identity to each process. Next the job control information is
required; this is obtained by the routine simdef, which reads the CONTROL file (section
4.1.1). The description of the system to be simulated: the types of atoms and molecules
present and the intermolecular forces; are obtained by the sysdef routine, which reads the
FIELD file (section 4.1.3). Lastly, the atomic positions and velocities must be provided.
These are obtained by the sysgen routine, which reads the CONFIG file (section 4.1.2)
and also generates the initial velocities if required to do so. If the system contains con-
straint bonds, the routine passcon is required to process molecular connectivity data and
establish the communication procedure between nodes, and the quench routine is required
to set the starting velocities correctly. Also needed in the initialisation, is the routine for-
gen, which constructs the interpolation arrays for the short-range forces calculations, and
the routine exclude which identifies atoms that are explictly chemically bonded through
bonds, constraints or valence angles. The resulting list is known as the excluded atoms list.

The calculation of the pair forces represents the bulk of any simulation. A Verlet
neighbour list is used by DL POLY 2 in calculating the atomic forces. The routine that

c©CCLRC 89

constructs this this is called parlst. This routine builds the neighbour list taking into
account the occurrence of atoms in the excluded atoms list. The routine srfrce calculates
the short-range (van der Waals) forces, making use of the images routine to handle any
periodic boundary conditions. Coulombic forces are handled by a varity of routines: coul0,
coul1 and coul2 handle Coulombic forces without periodic boundaries; ewald1, ewald2
and ewald3 are used for systems with periodic boundaries (an additional routine: ewald4
is necessary for the multiple timestep algorithm). Intramolecular forces require the routines
angfrc, bndfrc and dihfrc. If the multiple timestep algorithm is required, the routine
multiple must be used to call the various forces routines. It also calls the primlst routine
to split the interaction list into primary and secondary neighbours. The decision to update
the neighbour list is handled by the routine vertest. The routine extnfld is required
if the simulated system has an external force field (e.g. electrostatic field) operating. To
help with equilibration simulations, the routine fcap is sometimes required to reduce the
magnitude of badly equilibrated forces. Since DL POLY 2 is based on the replicated data
strategy, a global sum routine (gdsum) is required to sum the atomic forces on all nodes.

Integration of the equations of motion is handled by one of the routines listed and
described in section 2.5. For example routines nve 0, nvt e0, nvt h0, nvt b0 etc. are
used if no constraint forces are present. These routines treat the NVE, Evans-NVT, Hoover-
Nosé-NVT and NVT-Berendsen ensembles respectively. The corresponding versions of these
routines which handle constraint forces are nve 1, nvt e1, nvt h1 or nvt b1. These
versions call the routine rdshake 1 to handle the constraints. rdshake 1 itself calls
a number of additional routines: merge, shmove and splice. For ad hoc temperature
scaling, the routine vscaleg is required.

As mentioned elsewhere, DL POLY 2 does not contain many routines for computing
system properties during a simulation. Radial distributions may be calculated however,
using the routines rdf0 and rdf1. Similarly diffsn0 and diffsn1 calculate approximate
mean square displacements. Ordinary thermodynamic quantities are calculated by the
routine static, which also writes the STATIS file (section 4.2.7). Routine traject writes
the HISTORY (section 4.2.1) file for later analysis.

Job termination is handled by the routine result which writes the final summaries in
the OUTPUT file and dumps the restart files REVIVE and REVCON (sections 4.2.4 and
4.2.3 respectively).

An idea of the construction of a DL POLY 2 program can be obtained from the following
flowchart. The example represents a DL POLY 2 program which uses the multiple timestep
algorithm, with bond constraints and the Nosé-Hoover thermostat.

c©CCLRC 90

DLPOLY

MACHINE

SIMDEF

SYSDEF

FORGEN

SYSGEN

EXCLUDE

INTLIST

GAUSS

QUENCH

LRCORRECT

PASSCON

SHMOVE

SPLICE

VSCALE
VERTEST

PARLST

MULTIPLE

BNDFRC

ANGFRC

DIHFRC

EXTNFLD

GDSUM FORCES

NVT_H1

VSCALE

STATIC

REVIVE

TRAJECT

RESULT

EWALD1

PRIMLST

SRFRCE

EWALD2,4

RDF0

COUL0,1 or 2

EWALD3

RDSHAKE_1

SHMOVE

SPLICE

MERGE

REVIVE

RDF1

FCAP

DIFFSN0,1

c©CCLRC 91

3.2 Compiling and Running DL POLY 2

3.2.1 Compiling the Source Code

When you have obtained DL POLY 2 from Daresbury Laboratory and unpacked it, your
next task will be to compile it. To aid compilation a set of makefiles has been provided in
the sub-directory build (see example in Appendix A of this document). The versions go by
the names of:

• MakePAR - to build a parallel MPI version on a unix platform;

• MakeSEQ - to build a sequential (one processor) unix version;

• MakeWIN - to build a Windows (one processor, XP) version.

Select the one you need and copy it into the srcf90 directory. (In what follows we as-
sume the makefile in the srcf90 directory is called ‘Makefile’.) The Makefile will build an
executable with a wide range of functionality - sufficient for the test cases and for most
users’ requirements. Other makefiles may be found in the build sub-directory for variants
of DL POLY 2 .

Users will need to modify the Makefile if they are to add additional functionality to the
code, or if it requires adaptation for a non specified computer. Modifications may also be
needed for the Smoothed Particle Mesh Ewald method if a system specific 3D FFT routine
is desired (see below: “Modifying the makefile”).

Note the following system requirements for a successful build of DL POLY 2 .

1. a FORTRAN 90 compiler;

2. the Java SDK from Sun Microsystems (if the GUI is required).

3. a UNIX operating system (or Windows XP if a PC version is required).

Run the Makefile you copied from the build sub-directory in the srcf90 sub-directory. It
will create the executable in the execute sub-directory. The compilation of the program is
initiated by typing the command:

make target

where target is the specification of the required machine (e.g. hpcx). For many computer
systems this is all that is required to compile a working version of DL POLY 2 . (To
determine which targets are already defined in the makefile, typing the command make
without a nominated target will produce a list of known targets.)

The full specification of the make command is as follows

make <TARGET= . . . > < TYPE=. . . > < EX=. . . > < BINROOT=. . . >

c©CCLRC 92

where some (or all) of the keywords may be omitted. The keywords and their uses are
described below. Note that keywords may also be set in the unix environment (e.g. with
the “setenv” command in a C-shell).

For PCs running Windows, the makefile assumes the user has installed the Cygwin Unix
API available from http://sources.redhat.com/cygwin. The recommended FORTRAN 90
compiler is Compaq Visual Fortran (see: http://www.compaq.com/fortran/visual). Both
of these are copyrighted products.

3.2.1.1 Keywords for the Makefile

1. TARGET

The TARGET keyword indicates which kind of computer the code is to be com-
piled for. This must be specifed - there is no default value. Valid targets can be
listed by the makefile if the command make is typed, without arguments. The list
frequently changes as more targets are added and redundant ones removed. Users are
encouraged to extend the Makefile for themselves, using existing targets as examples.

2. TYPE

The TYPE keyword creates variants of the DL POLY 2 code which determine which
scheme is to be used for the interpolation of the short-range potential and force arrays.
The arguments are:

• 3pt - compile with 3-point interpolation (default);

• 4pt - compile with 4-point interpolation;

• rsq - compile with r2 interpolation.

A discussion of the merits of the different interpolation methods is given below (section
3.2.1.3).

3. EX

The EX keyword specifies the executable name. The default name for the executable
is “DLPOLY.X”.

4. BINROOT

The BINROOT keyword specifies the directory in which the executable is to be stored.
The default setting is “../execute”.

3.2.1.2 Modifying the Makefile

1. Changing the TARGET

If you do not intend to run DL POLY 2 on one of the specified machines, you must

c©CCLRC 93

add appropriate lines to the makefile to suit your circumstances. The safest way
to do this is to modify an existing TARGET option for your purposes. The makefile
supplied with DL POLY 2 contains examples for serial and MPI environments as well
as for different parallel machines, so you should find one close to your requirements.
You must of course be familiar with the appropriate invocation of the FORTRAN
compiler for your local machine and also any alternatives to MPI your local machine
may be running. If you wish to compile for MPI systems remember to ensure the
appropriate library directories are accessible to you. If you require a serial version of
the code, you must remove references to the MPI libraries from the Makefile and add
the file serial.f to your compilation - this will insert replacement (dummy) routiens
for the MPI calls.

2. Enabling the Smoothed Particle Mesh Ewald

The standard compilation of DL POLY 2 will incorporate a basic 3D Fast Fourier
Transform (FFT) routine to enable the SPME functionality. Users may wish to try
alternative FFT routines, which may offer faster performance. Some ‘hooks’ for these
appear in the code as comment lines in the FORTRAN source. The user should search
for the following keys in the code:

• CCRAY - for the Cray FFT routines;

• CFFTW - for the FFTW public domain FFT routines;

• CESSL - for the IBM scientific library FFT routines;

• CSGIC - for the Silicon Graphics FFT routines.

The appropriate lines should be uncommented and the references to the DLPFFT3
subroutine should be commented out before compiling.

3. Problems with optimization ?

Some subroutines may not compile correctly when using optimization on some com-
pilers. This is not the fault of the DL POLY 2 code, but of the compiler concerned.
This is circumvented by compiling the offending subroutines unoptimised. See the
entries for various machines in the makefile to see how this is done if you experience
problems with other subroutines.

4. Adding new functionality

To include a new subroutine in the code simply add subroutine.o to the list of object
names in the makefile. The simplest way is to add names to the “OBJ ALL” list.

c©CCLRC 94

3.2.1.3 Note on Interpolation Schemes

In DL POLY 2 the short-range (Van der Waals) contributions to energy and force are
evaluated by interpolation of tables constructed at the beginning of execution. DL POLY 2
caters for three different interpolation schemes: 3-point and 4-point in r-space and linear
interpolation in r2-space. Tabulation in r2 avoids the use of the square root function in
evaluation of the non-bonded interactions, and thus typically decreases execution time by
10-15 %. Note that tabulation in r2 usually requires more grid points (and hence more
memory) than tabulation in r. This is to ensure sufficient accuracy is retained at small r.

A guide to the minimum number of grid points (mxgrid) required for interpolation in
r to give good energy conservation in a simulation is:

mxgrid ≥ 100(rcut/rmin)

where rmin is the smallest position minimum of the non-bonded potentials in the sys-
tem. The parameter mxgrid is defined in the dl params.inc file, and must be set before
compilation.

A guide to the minimum number of grid points required for interpolation in r2 is:

mxgrid ≥ 100(rcut/rmin)2

where rmin is again the smallest position minimum of the non-bonded potentials in the
system.

For users in doubt as whether to use r or r2-space interpolation we recommend the
former. This is because tabulation in r is less demanding on memory requirements and less
prone to inaccuracy should too small a value of mxgrid, or too large a value of rcut, be
used. Tabulation in r is therefore the default option for DL POLY, r2 interpolation can be
specified at compile time by ‘making’ the executable with the directive TYPE=rsq.

The other issue of concern to users is the choice of 3 or 4 point schemes in r-space in-
terpolation. The relative merits are as follows: 4 point interpolation may permit a smaller
number of grid points to be used in the interpolation tables thus saving on memory require-
ments. 3 point interpolation is quicker than 4 point interpolation and normally sufficiently
accurate. The choice involves decisions about speed, accuracy and memory requirements.
3-point interpolation is the default option.

A utility program tabchk is provided in the DL POLY utility sub-directory to help
users choose a sufficiently accurate interpolation scheme (including array sizes) for their
needs.

3.2.2 Running DL POLY 2

To run the DL POLY 2 executable (DLPOLY.X) you will initially require three, possibly
four, input data files, which you must create in the execute sub-directory, (or whichever
sub-directory you keep the executable program.) The first of these is the CONTROL file
(section 4.1.1), which indicates to DL POLY 2 what kind of simulation you want to run,
how much data you want to gather and for how long you want the job to run. The second
file you need is the CONFIG file (section 4.1.2). This contains the atom positions and,

c©CCLRC 95

depending on how the file was created (e.g. whether this is a configuration created from
‘scratch’ or the end point of another run), the velocities also. The third file required is the
FIELD file (section 4.1.3), which specifies the nature of the intermolecular interactions, the
molecular topology and the atomic properties, such as charge and mass. Sometimes you
will require a fourth file: TABLE (section 4.1.5), which contains the potential and force
arrays for functional forms not available within DL POLY 2 (usually because they are too
complex e.g. spline potentials).

Examples of input files are found in the data sub-directory, which can be copied into
the execute subdirectory using the select macro found in the execute sub-directory.

A successful run of DL POLY 2 will generate several data files, which appear in the
execute sub-directory. The most obvious one is the file OUTPUT (section 4.2.2), which
provides an effective summary of the job run: the input information; starting configura-
tion; instantaneous and rolling-averaged thermodynamic data; final configurations; radial
distribution functions (RDFs); and job timing data. The OUTPUT file is human readable.
Also present will be the restart files REVIVE (section 4.2.4) and REVCON (section 4.2.3).
REVIVE contains the accumulated data for a number of thermodynamic quantities and
RDFs, and is intended to be used as the input file for a following run. It is not human
readable. The REVCON file contains the restart configuration i.e. the final positions, ve-
locities and forces of the atoms when the run ended and is human readable. The STATIS
file (section 4.2.7) contains a catalogue of instantaneous values of thermodynamic and other
variables, in a form suitable for temporal or statistical analysis. Finally, the HISTORY file
(section 4.2.1) provides a time ordered sequence of configurations to facilitate further anal-
ysis of the atomic motions. Depending on which version of the traject subroutine you
compiled in the code, this file may be either formatted (human readable) or unformatted.
You may move these output files back into the data sub-directory using the store macro
found in the execute sub-directory.

Note that versions of DL POLY 2 after 2.10 may also create the files RDFDAT and
ZDNDAT, containing the RDF and Z-density data respectively. They are both human
readable files.

3.2.3 Restarting DL POLY 2

The best approach to running DL POLY 2 is to define from the outset precisely the simula-
tion you wish to perform and create the input files specific to this requirement. The program
will then perform the requested simulation, but may terminate prematurely through error,
inadequate time allocation or computer failure. Errors in input data are your responsibil-
ity, but DL POLY 2 will usually give diagnostic messages to help you sort out the trouble.
Running out of job time is common and provided you have correctly specified the job time
variables (using the close time and job time directives - see section 4.1.1) in the CON-
TROL file, DL POLY 2 will stop in a controlled manner, allowing you to restart the job as
if it had not been interrupted.

To restart a simulation after normal termination you will again require the CONTROL
file, the FIELD (and TABLE) file, and a CONFIG file, which is the exact copy of the
REVCON file created by the previous job. You will also require a new file: REVOLD

c©CCLRC 96

(section 4.1.4), which is an exact copy of the previous REVIVE file. If you attempt to restart
DL POLY 2 without this additional file available, the job will fail. Note that DL POLY 2
will append new data to the existing STATIS and HISTORY files if the run is restarted,
other output files will be overwritten.

In the event of machine failure, you should be able to restart the job in the same way
from the surviving REVCON and REVIVE files, which are dumped at intervals to meet
just such an emergency. In this case check carefully that the input files are intact and use
the HISTORY and STATIS files with caution - there may be duplicated or missing records.
The reprieve processing capabilities of DL POLY 2 are not foolproof - the job may crash
while these files are being written for example, but they can help a great deal. You are
advised to keep backup copies of these files, noting the times they were written, to help
you avoid going right back to the start of a simulation.

You can also extend a simulation beyond its initial allocation of timesteps, provided
you still have the REVCON and REVIVE files. These should be copied to the CONFIG
and REVOLD files respectively and the directive timesteps adjusted in the CONTROL
file to the new total number of steps required for the simulation. For example if you wish to
extend a 10000 step simulation by a further 5000 steps use the directive timesteps 15000
in the CONTROL file and include the restart directive. You can use the restart scale
directive if you want to reset the temperature at the restart, but note that this also resets
all internal accumulators (timestep included) to zero.

3.3 A Guide to Preparing Input Files

The CONFIG file and the FIELD file can be quite large and unwieldy particularly if a
polymer or biological molecule is involved in the simulation. This section outlines the paths
to follow when trying to construct files for such systems. The description of the DL POLY 2
force field in chapter 2 is essential reading. The various utility routines mentioned in this
section are described in greater detail in chapter 6. Many of these have been incorporated
into the DL POLY 2 Graphical User Interface [8] and may be convienently used from there.

3.3.1 Inorganic Materials

The utility genlat can be used to construct the CONFIG file for relatively simple lattice
structures. Input is interactive. The FIELD file for such systems are normally small and can
be constructed by hand. The utility genlat.to constructs the CONFIG file for truncated-
octahedral boundary conditions. Otherwise the input of force field data for crystalline
systems is particularly simple, if no angular forces are required (notable exceptions to this
are zeolites and silicate glasses - see below). Such systems require only the specification of
the atomic types and the necessary pair forces. The reader is referred to the description of
the DL POLY 2 FIELD file for further details (section 4.1.3).

DL POLY 2 allows the simulation of zeolites and silicate (or other) glasses. Both these
materials require the use of angular forces to describe the local structure correctly. In both
cases the angular terms are included as three body terms, the forms of which are described
in chapter 2. These terms are entered into the FIELD file with the pair potentials. Note

c©CCLRC 97

that you cannot use truncated octahedral or rhombic dodecahedral boundary conditions in
conjunction with three body forces, due to the use of the link-cell algorithm for evaluating
the forces.

An alternative way of handling zeolites is to treat the zeolite framework as a kind of
macromolecule (see below). Specifying all this is tedious and is best done computationally:
what is required is to determine the nearest image neighbours of all atoms and assign
appropriate bond and valence angle potentials. (This may require the definition of new
bond forces in subroutine bndfrc, but this is easy.) What must be avoided at all costs is
specifying the angle potentials without specifying bond potentials. In this case DL POLY 2
will automatically cancel the non-bonded forces between atoms linked via valence angles
and the system will collapse. The advantage of this method is that the calculation is likely
to be faster using three-body forces. This method is not recommended for amorphous
systems.

3.3.2 Macromolecules

Simulations of proteins are best tackled using the package DLPROTEIN [46] which is an
adaptation of DL POLY specific to protein modelling. However you may simulate proteins
and other macromolecules with DL POLY 2 if you wish. This is described below.

If you select a protein structure from a SEQNET file (e.g. from the Brookhaven
database), use the utility proseq to generate the file CONFIG. This will then function
as input for DL POLY 2 . Some caution is required here however, as the protein structure
may not be fully determined and atoms may be missing from the CONFIG file.

If you have the “edit.out” file produced by AMBER for your molecule use this as
the CONNECT DAT input file for the utility ambforce. ambforce will produce the
DL POLY 2 FIELD and CONFIG files for your molecule.

If you do not have the “edit.out” file things are a little more tricky, particularly in
coming up with appropriate partial charges for atomic sites. However there are a series of
utilities that will at least produce the CONNECT DAT file for use with ambforce. We
now outline these utilities and the order in which they should be used.

If you have a structure from the Cambridge Structural database (CSDB) then use the
utility fraccon to take fractional coordinate data and produce a CONNECT DAT and
“ambforce.dat” file for use with ambforce. Note that you will need to modify fraccon to
get the AMBER names correct for sites in your molecule. The version of fraccon supplied
with DL POLY 2 is specific to the valinomycin molecule.

If you require an all atom force field and the database file does not contain hydrogen
positions then use the utility fracfill in place of fraccon. fraccon produces an output
file HFILL which should then be used as input for the utility hfill. The hfill utility fills
out the structure with the missing hydrogens. (Note that you may need to know what the
atomic charges are in some systems, for example the AMBER charges from the literature.)

Note: with minor modifications the utilities fracfill and fraccon can be used on
structures from databases other than the Cambridge structural database.

c©CCLRC 98

3.3.3 Adding Solvent to a Structure

The utility wateradd adds water from an equilibrated configuration of 256 SPC water
molecules at 300 K to fill out the MD cell. The utility solvadd fills out the MD box with
single-site solvent molecules from a f.c.c lattice. The FIELD files will then need to be edited
to account for the solvent molecules added to the file.

Hint: to save yourself some work in entering the non-bonded interactions variables
involving solvent sites to the FIELD file put two bogus atoms of each solvent type at the
end of the CONNECT DAT file (for AMBER force-fields) the utility ambforce will then
evaluate all the non-bonded variables required by DL POLY 2 . Remember to delete the
bogus entries from the CONFIG file before running DL POLY 2 .

3.3.4 Analysing Results

DL POLY 2 is not designed to calculate every conceivable property you might wish from
a simulation. Apart from some obvious thermodynamic quantities and radial distribution
functions, it does not calculate anything beyond the atomic trajectories on-line. You must
therefore be prepared to post-process the HISTORY file if you want other information.
There are some utilities in the DL POLY 2 package to help with this, but the list is far
from exhaustive. In time, we hope to have many more. Our users are invited to submit
code to the DL POLY 2 public library to help with this.

The utilities available are described in the DL POLY 2 Reference Manual, Chapter 6.
Users should also be aware that many of these utilities are incorporated into the DL POLY
Graphical User Interface [8].

3.3.5 Choosing Ewald Sum Variables

3.3.5.1 Ewald sum and SPME

This section outlines how to optimise the accuracy of the Ewald sum parameters for a
given simulation. In what follows the directive spme may be used anywhere in place of the
directive ewald if the user wishes to use the Smoothed Particle Mesh Ewald method.

As a guide to beginners DL POLY 2 will calculate reasonable parameters if the ewald
precision directive is used in the CONTROL file (see section 4.1.1). A relative error (see
below) of 10−6 is normally sufficient so the directive

ewald precision 1d-6

will cause DL POLY 2 to evaluate its best guess at the Ewald parameters α, kmax1, kmax2
and kmax3. (The user should note that this represents an estimate, and there are some-
times circumstances where the estimate can be improved upon. This is especially the case
when the system contains a strong directional anisotropy, such as a surface.) These four
parameters may also be set explicitly by the ewald sum directive in the CONTROL file.
For example the directive

ewald sum 0.35 6 6 8

c©CCLRC 99

would set α = 0.35 Å−1, kmax1 = 6, kmax2 = 6 and kmax3 = 8. The quickest check on
the accuracy of the Ewald sum is to compare the Coulombic energy (U) and the coulombic
virial (W) in a short simulation. Adherence to the relationship U = −W shows the extent
to which the Ewald sum is correctly converged. These variables can be found under the
columns headed eng cou and vir cou in the OUTPUT file (see section 4.2.2).

The remainder of this section explains the meanings of these parameters and how they
can be chosen. The Ewald sum can only be used in a three dimensional periodic system.
There are three variables that control the accuracy: α, the Ewald convergence parameter;
rcut the real space forces cutoff; and the kmax1,2,3 integers 1 that effectively define the
range of the reciprocal space sum (one integer for each of the three axis directions). These
variables are not independent, and it is usual to regard one of them as pre-determined and
adjust the other two accordingly. In this treatment we assume that rcut (defined by the
cutoff directive in the CONTROL file) is fixed for the given system.

The Ewald sum splits the (electrostatic) sum for the infinite, periodic, system into
a damped real space sum and a reciprocal space sum. The rate of convergence of both
sums is governed by α. Evaluation of the real space sum is truncated at r = rcut so it is
important that α be chosen so that contributions to the real space sum are negligible for
terms with r > rcut. The relative error (ε) in the real space sum truncated at rcut is given
approximately by

ε ≈ erfc(αrcut)/rcut ≈ exp[−(α.rcut)2]/rcut (3.1)

The recommended value for α is 3.2/rcut or greater (too large a value will make the
reciprocal space sum very slowly convergent). This gives a relative error in the energy of no
greater than ε = 4×10−5 in the real space sum. When using the directive ewald precision
DL POLY 2 makes use of a more sophisticated approximation:

erfc(x) ≈ 0.56 exp(−x2)/x (3.2)

to solve recursively for α, using equation 3.1 to give the first guess.
The relative error in the reciprocal space term is approximately

ε ≈ exp(−k2
max/4α2)/k2

max (3.3)

where
kmax =

2π

L
kmax (3.4)

is the largest k-vector considered in reciprocal space, L is the width of the cell in the
specified direction and kmax is an integer.

For a relative error of 4× 10−5 this means using kmax ≈ 6.2α. kmax is then

kmax > 3.2 L/rcut (3.5)

In a cubic system, rcut = L/2 implies kmax = 7. In practice the above equation
slightly over estimates the value of kmax required, so optimal values need to be found
experimentally. In the above example kmax = 5 or 6 would be adequate.

1Important note: For the SPME method the values of kmax1,2,3 should be double those obtained in
this prescription, since they specify the sides of a cube, not a radius of convergence.

c©CCLRC 100

If your simulation cell is a truncated octahedron or a rhombic dodecahedron then the
estimates for the kmax need to be multiplied by 21/3. This arises because twice the normal
number of k-vectors are required (half of which are redundant by symmetry) for these
boundary contributions [30].

If you wish to set the Ewald parameters manually (via the ewald sum or spme sum
directives) the recommended approach is as follows. Preselect the value of rcut, choose a
working a value of α of about 3.2/rcut and a large value for the kmax (say 10 10 10 or more).
Then do a series of ten or so single step simulations with your initial configuration and with
α ranging over the value you have chosen plus and minus 20%. Plot the Coulombic energy
(and −W) versus α. If the Ewald sum is correctly converged you will see a plateau in the
plot. Divergence from the plateau at small α is due to non-convergence in the real space
sum. Divergence from the plateau at large α is due to non-convergence of the reciprocal
space sum. Redo the series of calculations using smaller kmax values. The optimum values
for kmax are the smallest values that reproduce the correct Coulombic energy (the plateau
value) and virial at the value of α to be used in the simulation.

Note that one needs to specify the three integers (kmax1, kmax2, kmax3) referring to
the three spatial directions, to ensure the reciprocal space sum is equally accurate in all
directions. The values of kmax1, kmax2 and kmax3 must be commensurate with the cell
geometry to ensure the same minimum wavelength is used in all directions. For a cubic cell
set kmax1 = kmax2 = kmax3. However, for example, in a cell with dimensions 2A = 2B = C
(ie. a tetragonal cell, longer in the c direction than the a and b directions) use 2kmax1 =
2kmax2 = (kmax3).

If the values for the kmax used are too small, the Ewald sum will produce spurious
results. If values that are too large are used, the results will be correct but the calculation
will consume unnecessary amounts of cpu time. The amount of cpu time increases with
kmax1× kmax2× kmax3.

3.3.5.2 Hautman Klein Ewald Optimisation

Setting the HKE parameters can also be achieved rather simply, by the use of a hke
precision directive in the CONTROL file e.g.

hke precision 1d-6 1 1

which specifies the required accuracy of the HKE convergence functions, plus two additional
integers; the first specifying the order of the HKE expansion (nhko) and the second the
maximum lattice parameter (nlatt). DL POLY 2 will permit values of nhko from 1-3,
meaning the HKE Taylor series expansion may range from zeroth to third order. Also
nlatt may range from 1-2, meaning that (1) the nearest neighbour, and (2) and next nearest
neighbour, cells are explicitly treated in the real space part of the Ewald sum. Increasing
either of these parameters will increase the accuracy, but also substantially increase the cpu
time of a simulation. The recommended value for both these parameters is 1 and if both
these integers are left out, the default values will be adopted.

As with the standard Ewald and SPME methods, the user may set alternative control

c©CCLRC 101

parameters with the CONTROL file hke sum directive e.g.

hke sum 0.05 6 6 1 1

which would set α = 0.05 Å−1, kmax1 = 6, kmax2 = 6. Once again one may check the
accuracy by comparing the Coulombic energy with the virial, as described above. The last
two integers specify, once again, the values of nhko and nlatt respectively. (Note it is
possible to set either of these to zero in this case.)

Estimating the parameters required for a given simulation follows a similar procedure
as for the standard Ewald method (above), but is complicated by the occurrence of higher
orders of the convergence functions. Firstly a suitable value for α may be obtained when
nlatt=0 from the rule: α = β/rcut, where rcut is the largest real space cutoff compatible
with a single MD cell and β=(3.46,4.37,5.01,5.55) when nhko=(0,1,2,3) respectively. Thus
in the usual case where nhko=1, β=4.37. When nlatt6=0, this β value is multiplied by a
factor 1/(2 ∗ nlatt + 1).

The estimation of kmax1,2 is the same as that for the standard Ewald method above.
Note that if any of these parameters prove to be insufficiently accurate, DL POLY 2 will
issue an error in the OUTPUT file, and indicate whether it is the real or reciprocal space
sums that is questionable.

3.4 DL POLY 2 Error Processing

3.4.1 The DL POLY 2 Internal Error Facility

DL POLY 2 contains a number of in-built error checks scattered throughout the package
which detect a wide range of possible errors. In all cases, when an error is detected the
subroutine error is called, resulting in an appropriate message and termination of the
program execution (either immediately, or after additional processing.).

Users intending to insert new error checks should ensure that all error checks are per-
formed concurrently on all nodes, and that in circumstances where a different result may
obtain on different nodes, a call to the global status routine gstate is made to set the
appropriate global error flag on all nodes. Only after this is done, a call to subroutine
error may be made. An example of such a procedure might be:

logical safe
safe=(test condition)
call gstate(safe)
if(.not.safe) call error(node id,message number)

In this example it is assumed that the logical operation test condition will result in the
answer .true. if it is safe for the program to proceed, and .false. otherwise. The call to
error requires the user to state the identity of the calling node (node id), so that only
the nominated node in error (i.e. node 0) will print the error message. The variable
message number is an integer used to identify the appropriate message to be printed.

c©CCLRC 102

In all cases, if error is called with a non-negative message number, the program run
terminates. If the message number is negative, execution continues, but even in this case
DL POLY 2 will terminate the job at a more appropriate place. This feature is used in
processing the CONTROL and FIELD file directives. A possible modification users may
consider is to dump additional data before the call to error is made.

A full list of the DL POLY 2 error messages and the appropriate user action can be
found in Appendix C of this document.

Chapter 4

DL POLY 2 Data Files

103

c©CCLRC 104

Scope of Chapter

This chapter describes all the input and output files for DL POLY 2 , examples of which
are to be found in the data sub-directory.

c©CCLRC 105

4.1 The INPUT files

CONFIG

REVOLD

TABLE

CONTROL

FIELD

REVCON

OUTPUT

HISTORY

STATIS

RDFDAT

ZDNDAT

REVIVE

*

*

*

*

*

*

Figure 4.1: DL POLY 2 input (left) and output (right) files. Note: files marked with an
asterisk are non-mandatory.

DL POLY 2 requires five input files named CONTROL, CONFIG, FIELD, TABLE and
REVOLD. The first three files are mandatory, while TABLE is used only to input certain
kinds of pair potential, and is not always required. REVOLD is required only if the job
represents a continuation of a previous job. In the following sections we describe the form
and content of these files.

4.1.1 The CONTROL File

The CONTROL file is read by the subroutine simdef and defines the control variables for
running a DL POLY 2 job. It makes extensive use of directives and keywords. Directives
are character strings that appear as the first entry on a data record (or line) and which

c©CCLRC 106

invoke a particular operation or provide numerical parameters. Also associated with each
directive may be one or more keywords, which may qualify a particular directive by, for
example, adding extra options. Directives have the following general form:

keyword [options] {data}

The keyword and options are text fields, while the data options are numbers (integers
or reals).

Directives can appear in any order in the CONTROL file, except for the finish directive
which marks the end of the file. Some of the directives are mandatory (for example the
timestep directive that defines the timestep), others are optional.

This way of constructing the file is very convenient, but it has inherent dangers. It is, for
example, quite easy to specify the same directive more than once, or specify contradictory
directives, or invoke algorithms that do not work together. By and large DL POLY 2 tries
to sort out these difficulties and print helpful error messages, but it does not claim to be
foolproof. Fortunately in most cases the CONTROL file will be small and easy to check
visually. It is important to think carefully about a simulation beforehand and ensure that
DL POLY 2 is being asked to do something that is physically reasonable. It should also be
remembered that the present capabilites the package may not allow the simulation required
and it may be necessary for you yourself to add new features.

An example CONTROL file appears below. The directives and keywords appearing are
described in the following section.

DL_POLY TEST CASE 1: K Na disilicate glass

temperature 1000.0
pressure 0.0000
ensemble nve

integrator leapfrog
steps 500
equilibration 200
multiple step 5
scale 10
print 10
stack 100
stats 10
rdf 10

timestep 0.0010
primary cutoff 9.0000
cutoff 12.030
delr width 1.0000
rvdw cutoff 7.6000

c©CCLRC 107

ewald precision 1.0E-5
print rdf

job time 1200.0
close time 100.00

finish

4.1.1.1 The CONTROL file format

The file is free-formatted, integers, reals and additional keywords are entered following the
keyword on each record. Real and integer numbers must be separated by a non-numeric
character (preferably a space or comma) to be correctly interpreted. No logical variables
appear in the control file. Comment records (beginning with a #) and blank lines may be
added to aid legibility (see example above). The CONTROL file is not case sensitive.

• The first record in the CONTROL file is a header 80 characters long, to aid identifi-
cation of the file.

• The last record is a finish directive, which marks the end of the input data.

Between the header and the finish directive, a wide choice of control directives may be
inserted. These are described below.

4.1.1.2 The CONTROL File Directives

The directives available are as follows.

directive: meaning:

all pairs use all pairs for electrostatic calculations
cap f cap forces during equilibration period

f is maximum cap in units of kT/Å
(default f=1000)

close time f set job closure time to f seconds
collect include equilibration data in overall statistics
coul calculate coulombic forces
cut f set required forces cutoff to f (Å)
distan calculate coulombic forces using distance dependent dielectric
delr f set Verlet neighbour list shell width to f (Å)
ensemble nve select NVE ensemble (default)
ensemble nvt ber f

select NVT ensemble with Berendsen thermostat
with relaxation constant f (ps)

ensemble nvt evans

c©CCLRC 108

select NVT ensemble with Evans thermostat
ensemble nvt hoover f

select NVT ensemble with Hoover-Nose thermostat
with relaxation constant f (ps)

ensemble npt ber f1 f2

select Berendsen NPT ensemble with f1, f2

as the thermostat and barostat relaxation times (ps)
ensemble npt hoover f1 f2

select Hoover NPT ensemble with f1, f2

as the thermostat and barostat relaxation times (ps)
ensemble nst ber f1 f2

select Berendsen NσT ensemble, with f1, f2

as the thermostat and barostat relaxation times (ps)
ensemble nst hoover f1 f2

select Hoover NσT ensemble with f1, f2

as the thermostat and barostat relaxation times (ps)
ensemble pmf select (NVE) potential of mean force ensemble
eps f set relative dielectric constant to f (default 1.0)
equil n equilibrate simulation for first n timesteps
ewald precision f select Ewald sum for electrostatics, with

automatic parameter optimisation (0 < f < .5)
ewald sum α k1 k2 k3

select Ewald sum for electrostatics, with:
α = Ewald convergence parameter (Å−1)
k1 = maximum k-vector index in x-direction
k2 = maximum k-vector index in y-direction
k3 = maximum k-vector index in z-direction

finish close the CONTROL file (last data record)
hke precision f i j select HK-Ewald sum for electrostatics, with

automatic parameter optimisation (0 < f < .5)
i = required order of HKE expansion (recommend 1)
j = required lattice sum order (recommend 1)

hke sum α k1 k2 i j
select HK-Ewald sum for electrostatics, with:
α = Ewald convergence parameter (Å−1)
k1 = maximum g-vector index in x-direction
k2 = maximum g-vector index in y-direction
nhko = required order of HKE expansion (recommend 1)
nlatt = required lattice sum order (recommend 1)

integrator type select type of integration algorithm:
leapfrog : leapfrog integration algorithm (default)
velocity : velocity Verlet integration algorithm

job time f set job time to f seconds

c©CCLRC 109

mult n set multiple timestep (multi-step)interval (activated when n>2)
no elec ignore coulombic interactions
no vdw ignore short range (non-bonded) interactions
pres f set required system pressure to f katm

(target pressure for constant pressure ensembles)
prim f set primary cutoff to f (Å)

(for multiple timestep algorithm only)
print n print system data every n timesteps
print rdf print radial distribution functions
quaternion f set quaternion tolerance to f (default 10−8)
rdf f calculate radial distribution functions at intervals

of f timesteps
reaction select reaction field electrostatics
restart restart job from end point of previous run

(i.e. continue current simulation)
restart scale restart job from previous run with temperature scaling

(i.e. begin a new simulation from older run)
rvdw f set required vdw forces cutoff to f (Å)
scale n rescale atomic velocities every n steps (during equilibration)
shake f set shake tolerance to f (default 10−8)
shift calculate electrostatic forces using shifted coulombic potential
spme precision f select Ewald sum for electrostatics, with

automatic parameter optimisation (0 < f < .5)
spme sum α k1 k2 k3

select Ewald sum for electrostatics, with:
α = Ewald convergence parameter (Å−1)
k1 = maximum k-vector index in x-direction
k2 = maximum k-vector index in y-direction
k3 = maximum k-vector index in z-direction

stack n set rolling average stack to n timesteps
stats n accumulate statistics data every n timesteps
steps n run simulation for n timesteps
temp f set required simulation temperature to f K
traj i j k write HISTORY file with controls:

i = start timestep for dumping configurations
j = timestep interval between configurations
k = data level (i.e. variable keytrj see table 4.3)

timestep f set timestep to f ps
zden calculate the z-density profile
zero perform zero temperature MD run

c©CCLRC 110

4.1.1.3 Further Comments on the CONTROL File

1. A number of the directives (or their mutually exclusive alternatives) are manda-
tory:

(a) timestep: specifying the simulation timestep;

(b) temp or zero : specifying the system temperature (not mutually exclusive);

(c) ewald sum or ewald precision or spme sum or spme precision or hke sum
or hke precision or coul or shift or distan or reaction or no elec: specifying
the required coulombic forces option;

(d) cut and delr: specifying the short range forces cutoff and Verlet strip;

(e) prim: specifying primary forces cutoff (if mult>2 only).

2. The job time and close time directives are required to ensure a controlled close
down procedure when a job runs out of time. The time specified by the job time
directive indicates the total time allowed for the job. (This must obviously be set
equal to the time specified to the operating system when the job is submitted.) The
close time directive represents the time DL POLY 2 will require to write and close
all the data files at the end of processing. This means the effective processing time
limit is equal to the job time minus the close time. Thus when DL POLY 2 reaches
the effective job time limit it begins the close down procedure with enough time in
hand to ensure the files are correctly written. In this way you may be sure the restart
files etc. are complete when the job terminates. Note that setting the close time too
small will mean the job will crash before the files have been finished. If it is set too
large DL POLY 2 will begin closing down too early. How large the close time needs
to be to ensure safe close down is system dependent and a matter of experience. It
generally increases with the job size.

3. The starting options for a simulation are governed by the keyword restart. If this
is not specified in the CONTROL file, the simulation will start as new. If specifed,
it will either continue a previous simulation (restart) or start a new simulation with
initial temperature scaling of the previous configuration (restart scale) or without
initial temperature scaling (restart noscale). Internally these options are handled
by the integer variable keyres, which is explained in table 4.1.

4. The various ensemble options (i.e. nve, nvt ber, nvt evans, nvt hoover, npt
ber, npt hoover, nst ber, nst hoover) are mutually exclusive, though none is
mandatory (the default is the NVE ensemble). These options are handled internally
by the integer variable keyens. The meaning of this variable is explained in table 4.2.

5. The force selection directives ewald sum, ewald precision, reaction, coul, shift,
dist, no elec and no vdw are handled internally by the integer variable keyfce. See
table 4.4 for an explanation of this variable. Note that these options are mutually
exclusive.

c©CCLRC 111

6. The choice of reaction field electrostatics (directive reaction) requires also the spec-
ification of the relative dielectric constant external to the cavity. This is specified in
the eps directive.

7. DL POLY 2 uses as many as three different potential cutoffs. These are as follows:

(a) cut - this is the universal cutoff. It applies to the real space part of the elec-
trostatics calculations and to the van der Waals potentials if no other cutoff is
applied;

(b) rvdw - this is the user-specified cutoff for the van der Waals potentials. If not
specified its value defaults to rcut. It cannot exceed cut;

(c) rprim - this is used in the multiple timestep algorithm to specify the primary
atom region (see section 2.5.8). It has no meaning if the multiple timestep option
is not used.

8. Some directives are optional. If not specified DL POLY 2 will take default values if
necessary. The defaults appear in the above table.

9. The zero directive, enables a zero temperature simulation. This is intended as a
crude energy minimizer to help relax a system before a simulation begins. It should
not be thought of as a true energy minimization method.

10. The DL POLY 2 multiple timestep option is invoked if the number appearing with
the mult directive is greater than 2. This number (stored in the variable multt)
specifies the number of timesteps (the multi-step) that elapse between partitions of
the full Verlet neighbour list into primary and secondary atoms.

11. If a multiple time-step is used, (i.e. multt>2), then statistics for radial distribution
functions are collected only at updates of the secondary neighbour list. The num-
ber specified on the rdf directive (the variable nstbgr) means that RDF data are
accumulated at intervals of nstbgr×multt timesteps.

12. As a default, DL POLY 2 does not store statistical data during the equilibration
period. If the directive collect is used, equilibration data will be incorporated into
the overall statistics.

13. The directive delr specifies the width of the border to be used in the Verlet neighbour
list construction. The width is stored in the variable delr. The list is updated
whenever two or more atoms have moved a distance of more then delr/2 from their
positions at the last update of the Verlet list.

Users are advised to study the example CONTROL files appearing in the data sub-
directory to see how different files are constructed.

c©CCLRC 112

Table 4.1: Internal Restart Key

keyres meaning
0 start new simulation from CONFIG file,

and assign velocities from Gaussian distribution.
1 continue current simulation
2 start new simulation from CONFIG file,

and rescale velocities to desired temperature
3 start new simulation from CONFIG file,

without rescaling the velocities

Table 4.2: Internal Ensemble Key

keyens meaning
0 Microcanonical ensemble (NVE)
1 Evans NVT ensemble
2 Berendsen NVT ensemble
3 Nosé-Hoover NVT ensemble
4 Berendsen NPT ensemble
5 Nosé-Hoover NPT ensemble
6 Berendsen NσT ensemble
7 Nosé-Hoover NσT ensemble
8 Potential of mean force (NVE) ensemble

Table 4.3: Internal Trajectory File Key

keytrj meaning
0 coordinates only in file
1 coordinates and velocities in file
2 coordinates, velocities and forces in file

c©CCLRC 113

Table 4.4: Non-bonded force key

keyfce meaning
odd evaluate short-range potentials and electrostatics
even evaluate Electrostatic potential only

Electrostatics are evaluated as follows:
0†, 1‡ Ignore Electrostatic interactions

2, 3 Ewald summation
4, 5 distance dependent dielectric constant
6, 7 standard truncated Coulombic potential
8, 9 truncated and shifted Coulombic potential

10,11 Reaction Field electrostatics
12,13 SPME electrostatics
14,15 Hautman-Klein Ewald electrostatics

† keyfce = 0 means no non-bonded terms are evaluated.
‡ keyfce = 1 means only short-range potentials are evaluated.

c©CCLRC 114

4.1.2 The CONFIG File

The CONFIG file contains the dimensions of the unit cell, the key for periodic boundary
conditions and the atomic labels, coordinates, velocities and forces. This file is read by
the subroutine sysgen. (It is also read by the subroutine simdef if the ewald precision
directive is used.) The first few records of a typical CONFIG file are shown below:

IceI structure 6x6x6 unit cells with proton disorder
2 3

26.988000000000000 0.000000000000000 0.000000000000000
-13.494000000000000 23.372293600000000 0.000000000000000
0.000000000000000 0.000000000000000 44.028000000000000

OW 1
-2.505228382 -1.484234330 -7.274585343
0.5446573999 -1.872177437 -0.7702718106
3515.939287 13070.74357 4432.030587
HW 2

-1.622622646 -1.972916834 -7.340573742
1.507099154 -1.577400769 4.328786484
7455.527553 -4806.880540 -1255.814536
HW 3

-3.258494716 -2.125627191 -7.491549620
2.413871957 -4.336956694 2.951142896
-7896.278327 -8318.045939 -2379.766752
OW 4

0.9720599243E-01 -2.503798635 -3.732081894
1.787340483 -1.021777575 0.5473436377
9226.455153 9445.662860 5365.202509

etc.

4.1.2.1 Format

The file is fixed-formatted: integers as “i10”, reals as “f20.0”. The header record is format-
ted as 80 alphanumeric characters.

4.1.2.2 Definitions of Variables

record 1
header a80 title line

record 2
levcfg integer CONFIG file key. See table 4.5 for permitted values
imcon integer Periodic boundary key. See table 4.6 for permitted values

record 3 omitted if imcon = 0
cell(1) real x component of a cell vector

c©CCLRC 115

cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record 4 omitted if imcon = 0
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record 5 omitted if imcon = 0
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

Subsequent records consists of blocks of between 2 and 4 records depending on the
value of the levcfg variable. Each block refers to one atom. The atoms must be listed
sequentially in order of increasing index. Within each block the data are as follows:

record i
atmnam a8 atom name.
index integer atom index
atmnum integer atomic number

record ii
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

record iii included only if levcfg > 0
vxx real x component of velocity
vyy real y component of velocity
vzz real x component of velocity

record iv included only if levcfg > 1
fxx real x component of force
fyy real y component of force
fzz real z component of force

Note that on record i only the atom name is mandatory, any other items are not read
by DL POLY 2 but may be added to aid alternative uses of the file, for example the
DL POLY 2 Graphical User Interface [8].

4.1.2.3 Further Comments

The CONFIG file has the same format as the output file REVCON (section 4.2.3). When
restarting from a previous run of DL POLY 2 (i.e. using the restart or restart scale di-
rectives in the CONTROL file - above), the CONFIG file must be replaced by the REVCON
file, which is renamed as the CONFIG file. The copy macro in the execute sub-directory of
DL POLY 2 does this for you.

c©CCLRC 116

Table 4.5: CONFIG file key (record 2)

levcfg meaning
0 Coordinates included in file
1 Coordinates and velocities included in file
2 Coordinates, velocities and forces included in file

Table 4.6: Periodic boundary key (record 2)

imcon meaning
0 no periodic boundaries
1 cubic boundary conditions
2 orthorhombic boundary conditions
3 parallelepiped boundary conditions
4 truncated octahedral boundary conditions
5 rhombic dodecahedral boundary conditions
6 x-y parallelogram boundary conditions with

no periodicity in the z direction
7 hexagonal prism boundary conditions

c©CCLRC 117

4.1.3 The FIELD File

The FIELD file contains the force field information defining the nature of the molecular
forces. It is read by the subroutine sysdef. Excerpts from a force field file are shown
below. The example is the antibiotic Valinomycin in a cluster of 146 water molecules.

Valinomycin Molecule with 146 SPC Waters
UNITS kcal

MOLECULES 2
Valinomycin
NUMMOLS 1
ATOMS 168

O 16.0000 -0.4160 1
OS 16.0000 -0.4550 1
" " " "
" " " "
HC 1.0080 0.0580 1
C 12.0100 0.4770 1

BONDS 78
harm 31 19 674.000 1.44900
harm 33 31 620.000 1.52600

" " " " "
" " " " "

harm 168 19 980.000 1.33500
harm 168 162 634.000 1.52200
CONSTRAINTS 90

20 19 1.000017
22 21 1.000032
" " "
" " "

166 164 1.000087
167 164 0.999968

ANGLES 312
harm 43 2 44 200.00 116.40
harm 69 5 70 200.00 116.40
" " " " " "
" " " " " "

harm 18 168 162 160.00 120.40
harm 19 168 162 140.00 116.60
DIHEDRALS 371
harm 1 43 2 44 2.3000 180.00
harm 31 43 2 44 2.3000 180.00
" " " " " " "
" " " " " " "

c©CCLRC 118

cos 149 17 161 16 10.500 180.00
cos 162 19 168 18 10.500 180.00
FINISH
SPC Water
NUMMOLS 146
ATOMS 3

OW 16.0000 -0.8200
HW 1.0080 0.4100
HW 1.0080 0.4100

CONSTRAINTS 3
1 2 1.0000
1 3 1.0000
2 3 1.63299

FINISH
VDW 45
C C lj 0.12000 3.2963
C CT lj 0.08485 3.2518
" " " " "
" " " " "
" " " " "
OW OS lj 0.15100 3.0451
OS OS lj 0.15000 2.9400
CLOSE

4.1.3.1 Format

The FIELD file is free formatted (though it should be noted that atom names are limited
to 8 characters and potential function keys are a maximum of 4 characters). The contents
of the file are variable and are defined by the use of directives. Additional information is
associated with the directives. The file is not case sensitive.

4.1.3.2 Definitions of Variables

The file divides into three sections: general information, molecular descriptions, and non-
bonded interaction descriptions, appearing in that order in the file.

4.1.3.2.1 General information

The first record in the FIELD file is the title. It must be followed by the units directive.
Both of these are mandatory. These records may optionally be followed by the neut
directive.

record 1
header a80 field file header

record 2

c©CCLRC 119

units a40 Unit of energy used for input and output
record 3 (optional)
neut a40 activate the neutral/charge groups option for

the electrostatic calculations

The energy units on the units directive are described by additional keywords:

a eV, for electron-volts

b kcal, for k-calories mol−1

c kJ, for k-Joules mol−1

d internal, for DL POLY 2 internal units (10 J mol−1).

If no units keyword is entered, DL POLY 2 units are assumed for both input and output.
The units keyword may appear anywhere on the data record provided it does not exceed
column 40. The units directive only affects the input and output interfaces, all internal
calculations are handled using DL POLY 2 units.

4.1.3.2.2 Molecular details

It is important for the user to understand that there is an organisational correspondence
between the FIELD file and the CONFIG file described above. It is required that the order
of specification of molecular types and their atomic constituents in the FIELD file follows
the order in which they appear in the CONFIG file. Failure to adhere to this common
sequence will be detected by DL POLY 2 and result in premature termination of the job.
It is therefore essential to work from the CONFIG file when constructing the FIELD file.
It is not as difficult as it sounds!

The entry of the molecular details begins with the mandatory directive:

molecules n

where n is an integer specifying the number of different types of molecule appearing in
the FIELD file. Once this directive has been encountered, DL POLY 2 enters the molecular
description environment in which only molecular decription keywords and data are valid.

Immediately following the molecules directive, are the records defining individual
molecules:

1. name-of-molecule
which can be any character string up to 80 characters in length. (Note: this is not a
directive, just a simple character string.)

2. nummols n
where n is the number of times a molecule of this type appears in the simulated
system. The molecular data then follow in subsequent records:

c©CCLRC 120

3. atoms n
where n indicates the number of atoms in this type of molecule. A number of records
follow, each giving details of the atoms in the molecule i.e. site names, masses and
charges. Each record carries the entries:

sitnam a8 atomic site name
weight real atomic site mass
chge real atomic site charge
nrept integer repeat counter
ifrz integer ‘frozen’ atom (if ifrz> 0)
igrp integer neutral/charge group number

Note that these entries are order sensitive. Do not leave blank entries unless all
parameters appearing after the last specified are void. The integer nrept need not be
specified (in which case a value of 1 is assumed.) A number greater than 1 specified
here indicates that the next (nrept - 1) entries in the CONFIG file are ascribed the
atomic characteristics given in the current record. The sum of the repeat numbers for
all atoms in a molecule should equal the number specified by the atoms directive.

4. shell n m
where n is the number of core-shell units and m is an integer specifying which shell
model is required:

• m=1 for adiabatic shell model;

• m=2 for relaxed shell model;

Each of the subsequent n records contains:

index 1 integer site index of core
index 2 integer site index of shell
spring real force constant of core-shell spring

The spring force constant is entered in units of engunit Å−2, where engunit is the
energy unit specified in the units directive. The adiabatic and relaxed shell models
are mutually exclusive options in the same simulation.

Note that the atomic site indices referred to in this table are indices arising from
numbering each atom in the molecule from 1 to the number specified in the atoms
directive for this molecule. This same numbering scheme should be used for all de-
scriptions of this molecule, including the bonds, constraints, angles, and dihe-
drals entries described below. DL POLY 2 will itself construct the global indices for
all atoms in the systems.

This directive (and associated data records) need not be specified if the molecule
contains no core-shell units.

c©CCLRC 121

5. bonds n
where n is the number of flexible chemical bonds in the molecule. Each of the subse-
quent n records contains:

bond key a4 see table 4.7
index 1 integer first atomic site in bond
index 2 integer second atomic site in bond
variable 1 real potential parameter see table 4.7
variable 2 real potential parameter see table 4.7
variable 3 real potential parameter see table 4.7
variable 4 real potential parameter see table 4.7

The meaning of these variables is given in table 4.7. This directive (and associated
data records) need not be specified if the molecule contains no flexible chemical bonds.
See the note on the atomic indices appearing under the shell directive above.

6. constraints n
where n is the number of constraint bonds in the molecule. Each of the following n
records contains:

index 1 integer first atomic index
index 2 integer second atomic index
bondlength real constraint bond length

This directive (and associated data records) need not be specified if the molecule
contains no constraint bonds. See the note on the atomic indices appearing under the
shell directive above.

7. pmf b
where b is the potential of mean force bondlength (Å). There follows the definitions
of two PMF units:

(a) pmf unit n1

where n1 is the number of sites in the first unit. The subsequent n1 records
provide the site indices and weighting. Each record contains:

index integer atomic site index
weight real site weighting

(b) pmf unit n2

where n2 is the number of sites in the second unit. The subsequent n2 records
provide the site indices and weighting. Each record contains:

c©CCLRC 122

Table 4.7: Chemical bond potentials

key potential type Variables (1-4) functional form

harm Harmonic k r0 U(r) = 1
2k(r − r0)2

-hrm

mors Morse E0 r0 k U(r) = E0[{1− exp(−k(r − r0))}2 − 1]
-mrs

12-6 12-6 A B U(r) =
(

A
r12

)
−

(
B
r6

)

-126

rhrm Restraint k r0 rc U(r) = 1
2k(r − r0)2 |r − r0| ≤ rc

U(r) = 1
2kr2

c + krc(|r − r0| − rc) |r − r0| > rc

-rhm

quar Quartic k r0 k′ k′′ U(r) = k
2 (r − r0)2 + k′

3 (r − r0)3 + k′′
4 (r − r0)4

-qur

buck Buckingham A ρ C U(r) = Aexp(−r/ρ)− C/r6

-bck

Note: bond potentials with a dash (-) as the first character of the keyword, do not con-
tribute to the excluded atoms list (see section 2.1). In this case DL POLY 2 will also
calculate the nonbonded pair potentials between the described atoms, unless these are
deactivated by another potential specification.

index integer atomic site index
weight real site weighting

This directive (and associated data records) need not be specified if no PMF con-
straints are present. See the note on the atomic indices appearing under the shell
directive above. The pmf bondlength applies to the distance between the centres of
the two pmf units. The centre, R, of each unit is given by

R =
∑

α wαrα∑
α wα

where rα is a site position and wα the site weighting. Note that the pmf constraint is
intramolecular. To define a constraint between two molecules, the molecules must be
described as part of the same DL POLY “molecule”. This is illustrated in test case
6, where a pmf constraint is imposed between a potassium ion and the centre of mass

c©CCLRC 123

of a water molecule. DL POLY 2 allows only one type of pmf constraint per system.
The value of nummols for this molecule determines the number of pmf constraint in
the system.

Note that the directive ensemble pmf must be specified in the CONTROL file for
this option to be implemented correctly.

8. angles n
where n is the number of valence angle bonds in the molecule. Each of the n records
following contains:

angle key a4 potential key. See table 4.8
index 1 integer first atomic index
index 2 integer second atomic index (central site)
index 3 integer third atomic index
variable 1 real potential parameter see table 4.8
variable 2 real potential parameter see table 4.8

The meaning of these variables is given in table 4.8. See the note on the atomic
indices appearing under the shell directive above. This directive (and associated
data records) need not be specified if the molecule contains no angular terms.

c©CCLRC 124

Table 4.8: Valence Angle potentials

key potential type Variables (1-4) functional form†

harm Harmonic k θ0 U(θ) = k
2 (θ − θ0)2

-hrm

quar Quartic k θ0 k′ k′′ U(θ) = k
2 (θ − θ0)2 + k′

3 (θ − θ0)3 + k′′
4 (θ − θ0)4

-qur

thrm Truncated harmonic k θ0 ρ U(θ) = k
2 (θ − θ0)2 exp[−(r8

ij + r8
ik)/ρ8]

-thm

shrm Screened harmonic k θ0 ρ1 ρ2 U(θ) = k
2 (θ − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]

-shm

bvs1 Screened Vessal[24] k θ0 ρ1 ρ2 U(θ) = k
8(θ−θ0)2

{[
(θ0 − π)2 − (θ − π)2

]2}

-bv1 exp[−(rij/ρ1 + rik/ρ2)]

bvs2 Truncated Vessal[25] k θ0 a ρ U(θ) = k[θa(θ − θ0)2(θ + θ0 − 2π)2 − a
2πa−1

-bv2 (θ − θ0)2(π − θ0)3] exp[−(r8
ij + r8

ik)/ρ8]

hcos Harmonic Cosine k θ0 U(θ) = k
2 (cos(θ)− cos(θ0))2

-hcs

cos Cosine A δ m U(θ) = A[1 + cos(mθ − δ)]
-cos

mmsb MM Stretch-bend A θ0 dab dac U(θ) = A(θ − θ0)(rab − dab)(rac − dac)
-msb

†θ is the a-b-c angle.

Note: valence angle potentials with a dash (-) as the first character of the keyword, do
not contribute to the excluded atoms list (see section 2.1). In this case DL POLY 2 will
calculate the nonbonded pair potentials between the described atoms.

c©CCLRC 125

9. dihedrals n
where n is the number of dihedral interactions present in the molecule. Each of the
following n records contains:

dihedral key a4 potential key. See table 4.9
index 1 integer first atomic index
index 2 integer second atomic index
index 3 integer third atomic index
index 4 integer fourth atomic index
variable 1 real potential parameter see table 4.9
variable 2 real potential parameter see table 4.9
variable 3 real potential parameter see table 4.9
variable 4 real 1-4 electrostatic interaction scale factor.
variable 5 real 1-4 Van der Waals interaction scale factor.

The meaning of the variables 1-3 is given in table 4.9. The variables 4 and 5 specify
the scaling factor for the 1-4 electrostatic and Van der Waals nonbonded interactions
respectively. This directive (and associated data records) need not be specified if
the molecule contains no dihedral angle terms. See the note on the atomic indices
appearing under the shell directive above.

10. inversions n
where n is the number of inversion interactions present in the molecule. Each of the
following n records contains:

inversion key a4 potential key. See table 4.10
index 1 integer first atomic index
index 2 integer second atomic index
index 3 integer third atomic index
index 4 integer fourth atomic index
variable 1 real potential parameter see table 4.10
variable 2 real potential parameter see table 4.10

The meaning of the variables 1-2 is given in table 4.10. This directive (and associated
data records) need not be specified if the molecule contains no inversion angle terms.
See the note on the atomic indices appearing under the shell directive above.

11. rigid n
where n is the number of rigid units in the molecule. It is followed by at least n
records, each specifying the sites in a rigid unit:

m integer number of sites in rigid unit
site 1 integer first site atomic index

c©CCLRC 126

Table 4.9: Dihedral Angle Potentials

key potential type Variables (1-4) functional form‡

cos Cosine A δ m U(φ) = A [1 + cos(mφ− δ)]

harm Harmonic k φ0 U(φ) = 1
2k(φ− φ0)2

hcos Harmonic cosine k φ0 U(φ) = k
2 (cos(φ)− cos(φ0))2

cos3 Triple cosine A1 A2 A3 U(φ) = 1
2A1(1 + cos(φ)) + 1

2A2(1− cos(2φ))
+1

2A3(1 + cos(3φ))

ryck Ryckaert- A U(φ) = A(a0 + a1cosφ− a2cos
2φ + a3cos

3φ+
Bellemans a4cos

4φ + a5cos
5φ) [a0 → a5 pre-set]

rbf Fluorinated B U(φ) = B(b0 − b1cosφ− b2cos
2φ− b3cos

3φ+
Ryckaert- b4cos

4φ + b5cos
5φ + b6exp(−b7(φ− π))

Bellemans [b0 → b6 pre-set]

opls OPLS A0 A1 A2 A3 U(φ) = A0 + 1
2(A1(1 + cos(φ)) + A2(1− cos(2φ))

+A3(1 + cos(3φ)))

‡φ is the a-b-c-d dihedral angle.

site 2 integer second site atomic index
site 3 integer third site atomic index
.. .. etc.
site m integer m’th site atomic index

Up to 15 sites can be specified on the first record. Additional records are used if
necessary. Up to 16 sites are specified per record thereafter.

This directive (and associated data records) need not be specified if the molecule
contains no rigid units. See the note on the atomic indices appearing under the shell
directive above.

12. teth n
where n is the number of tethered atoms in the molecule. It is followed by n records
specifying the tethered sites in the molecule:

tether key a4 tethering potential key see table 4.11
index integer atomic index

c©CCLRC 127

Table 4.10: Inversion Angle Potentials

key potential type Variables (1-2) functional form‡

harm Harmonic k φ0 U(φ) = 1
2k(φ− φ0)2

hcos Harmonic cosine k φ0 U(φ) = k
2 (cos(φ)− cos(φ0))2

plan Planar A U(φ) = A [1− cos(φ)]

‡φ is the inversion angle.

variable 1 real potential parameter see table 4.11
variable 2 real potential parameter see table 4.11
variable 3 real potential parameter see table 4.11
variable 4 real potential parameter see table 4.11

This directive (and associated data records) need not be specified if the molecule
contains no tethered atoms. See the note on the atomic indices appearing under the
shell directive above.

Table 4.11: Tethering potentials

key potential type Variables (1-3) functional form

harm Harmonic k U(r) = 1
2kr2

rhrm Restraint k rc U(r) = 1
2kr2 r ≤ rc

U = 1
2kr2

c + krc(r − rc) r > rc

quar Quartic k k′ k′′ U(r) = k
2r2 + k′

3 r3 + k′′
4 r4

13. finish
This directive is entered to signal to DL POLY 2 that the entry of the details of a
molecule has been completed.

The entries for a second molecule may now be entered, beginning with the name-of-
molecule record and ending with the finish directive.

The cycle is repeated until all the types of molecules indicated by the molecules
directive have been entered.

c©CCLRC 128

The user is recommended to look at the example FIELD files in the data directory to
see how typical FIELD files are constructed.

4.1.3.3 Non-bonded Interactions

Non-bonded interactions are identified by atom types as opposed to specific atomic indices.
The first type of non-bonded potentials are the pair potentials. The input of pair potential
data is signalled by the directive:

vdw n

where n is the number of pair potentials to be entered. There follows n records, each
specifying a particular pair potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
key a4 potential key. See table 4.12
variable 1 real potential parameter see table 4.12
variable 2 real potential parameter see table 4.12
variable 3 real potential parameter see table 4.12
variable 4 real potential parameter see table 4.12
variable 5 real potential parameter see table 4.12

The variables pertaining to each potential are described in table 4.12. Note that any pair
potential not specified in the FIELD file, will be assumed to be zero.

The specification of three body potentials is initiated by the directive:

tbp n

where n is the number of three-body potentials to be entered. There follows n records,
each specifying a particular three body potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type (central site)
atmnam 3 a8 third atom type
key a4 potential key. See table 4.13

c©CCLRC 129

Table 4.12: Definition of pair potential functions and variables

key potential type Variables (1-5) functional form

12-6 12-6 A B U(r) =
(

A
r12

)
−

(
B
r6

)

lj Lennard-Jones ε σ U(r) = 4ε
[(

σ
r

)12 − (
σ
r

)6
]

nm n-m Eo n m r0 U(r) = Eo
(n−m)

[
m

(
ro
r

)n − n
(

ro
r

)m]

buck Buckingham A ρ C U(r) = A exp
(
− r

ρ

)
− C

r6

bhm Born-Huggins A B σ C D U(r) = A exp[B(σ − r)]− C
r6 − D

r8

-Meyer

hbnd 12-10 H-bond A B U(r) =
(

A
r12

)
−

(
B
r10

)

snm Shifted force† Eo n m r0 rc
‡ U(r) = αEo

(n−m)×
n-m [27]

[
mβn

{(ro
r

)n −
(

1
γ

)n}
− nβm

{(ro
r

)m −
(

1
γ

)m}]

+nmαEo
(n−m)

(
r−γro

γro

) {(
β
γ

)n −
(

β
γ

)m}

mors Morse E0 r0 k U(r) = E0[{1− exp(−k(r − r0))}2 − 1]

tab Tabulation tabulated potential

† Note: in this formula the terms α, β and γ are compound expressions involving the
variables Eo, n,m, r0 and rc. See section 2.3.1 for further details.
‡ Note: rc defaults to the general van der Waals cutoff (rvdw or rcut) if it is set to zero or
not specified or not specified in the FIELD file.

c©CCLRC 130

Table 4.13: Three-body potentials

key potential type Variables (1-4) functional form†

thrm Truncated harmonic k θ0 ρ U(θ) = k
2 (θ − θ0)2 exp[−(r8

ij + r8
ik)/ρ8]

shrm Screened harmonic k θ0 ρ1 ρ2 U(θ) = k
2 (θ − θ0)2 exp[−(rij/ρ1 + rik/ρ2)]

bvs1 Screened Vessal[24] k θ0 ρ1 ρ2 U(θ) = k
8(θ−θ0)2

{[
(θ0 − π)2 − (θ − π)2

]2}

exp[−(rij/ρ1 + rik/ρ2)]

bvs2 Truncated Vessal[25] k θ0 a ρ U(θ) = k[θa(θ − θ0)2(θ + θ0 − 2π)2 − a
2πa−1

(θ − θ0)2(π − θ0)3] exp[−(r8
ij + r8

ik)/ρ8]

hbnd H-bond [6] Dhb Rhb U(θ) = Dhbcos
4(θ)[5(Rhb/rjk)12 − 6(Rhb/rjk)10]

†θ is the a-b-c angle.

variable 1 real potential parameter see table 4.13
variable 2 real potential parameter see table 4.13
variable 3 real potential parameter see table 4.13
variable 4 real potential parameter see table 4.13
variable 5 real cutoff range for this potential (Å)

The variables pertaining to each potential are described in table 4.13. Note that the fifth
variable is the range at which the three body potential is truncated. The distance is in Å,
measured from the central atom.

The specification of four body potentials is initiated by the directive:

fbp n

where n is the number of four-body potentials to be entered. There follows n records,
each specifying a particular four-body potential in the following manner:

atmnam 1 a8 first atom type (central site)
atmnam 2 a8 second atom type
atmnam 3 a8 third atom type
atmnam 4 a8 fourth atom type
key a4 potential key. See table 4.14
variable 1 real potential parameter see table 4.14
variable 2 real potential parameter see table 4.14
variable 3 real cutoff range for this potential (Å)

c©CCLRC 131

The variables pertaining to each potential are described in table 4.14. Note that the third
variable is the range at which the four-body potential is truncated. The distance is in Å,
measured from the central atom.

Table 4.14: Four-body Potentials

key potential type Variables (1-2) functional form‡

harm Harmonic k φ0 U(φ) = 1
2k(φ− φ0)2

hcos Harmonic cosine k φ0 U(φ) = k
2 (cos(φ)− cos(φ0))2

plan Planar A U(φ) = A [1− cos(φ)]

‡φ is the inversion angle.

4.1.3.4 Metal Potentials

Metal potentials in DL POLY 2 are based on the Finnis-Sinclair model [29]. The explicit
form of potential in DL POLY 2 is confined to the formulation of Sutton and Chen [3] and
Rafii-Tabar and Sutton [47]. These are also non-bonded potentials and are characterised
by atom types rather than specific atomic indices. The input of metal potential data is
signalled by the directive:

metal n

where n is the number of metal potentials to be entered. There follows n records, each
specifying a particular metal potential in the following manner:

atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
key a4 potential key. See table 4.15
variable 1 real potential parameter see table 4.15
variable 2 real potential parameter see table 4.15
variable 3 real potential parameter see table 4.15
variable 4 real potential parameter see table 4.15
variable 5 real potential parameter see table 4.15

The variables pertaining to each potential are described in table 4.15. Note that any metal
potential not specified in the FIELD file, will be assumed to be zero.

c©CCLRC 132

Table 4.15: Definition of metal potential functions and variables

key potential type Variables (1-5) functional form

stch Sutton-Chen ε a n m C Ui(r) = ε
[

1
2

∑
j 6=i

(
a

rij

)n − C
√

ρi

]

ρi =
∑

j 6=i

(
a

rij

)m

The Sutton-Chen potential will handle alloys, but care must be taken to enter the
cross terms of the potentials explicitly. Note that the rules for defining cross terms of the
potential are not the usual rules encountered in Lennard-Jones systems [47].

4.1.3.5 The Tersoff Potential

The Tersoff potential [4] is designed to reproduce the effects of covalency in systems com-
posed of group 4 elements in the periodic table (carbon, silicon, germanium etc) and their
alloys. Like the metal potentials these are also non-bonded potentials characterised by atom
types rather than specific atomic indices. The input of Tersoff potential data is signalled
by the directive:

tersoff n

Where n is the number of specified Tersoff potentials. It is followed by 2n records
specifying n particular Tersoff single atom type parameters and n(n+1)/2 records specifying
cross atom type parameters in the following manner:

potential 1 : record 1
atmnam a8 atom type
key a4 potential key, see Table 4.16
variable 1 real potential parameter, see Table 4.16
variable 2 real potential parameter, see Table 4.16
variable 3 real potential parameter, see Table 4.16
variable 4 real potential parameter, see Table 4.16
variable 5 real cutoff range for this potential (Å) 4.16

potential 1 : record 2
variable 6 real potential parameter, see Table 4.16
variable 7 real potential parameter, see Table 4.16
variable 8 real potential parameter, see Table 4.16
variable 9 real potential parameter, see Table 4.16
variable 10 real potential parameter, see Table 4.16
variable 11 real potential parameter, see Table 4.16
...
...

c©CCLRC 133

potential n : record 2n− 1
...

potential n : record 2n
...

cross term 1 : record 2n + 1
atmnam 1 a8 first atom type
atmnam 2 a8 second atom type
variable a real potential parameter, see Table 4.16
variable b real potential parameter, see Table 4.16
...
...

cross term n(n + 1)/2 : record 2n + n(n + 1)/2
...

The variables pertaining to each potential are described in Table 4.16.
Note that the fifth variable is the range at which the particular Tersoff potential is

truncated. The distance is in Å.

Table 4.16: Tersoff Potential
key potential type Variables (1-5,6-11,a-b) functional form

ters Tersoff A a B b R Potential form
(single) S β η c d h as shown in

Section
(cross) χ ω 2.3.3

4.1.3.6 External Field

The presence of an external field is flagged by the extern directive. The next line in the
FIELD file should have another directive indicating what type of field is to be applied. On
the following lines comes the mxfld parameters, five per line, that describe the field. In the
include files supplied with DL POLY 2 mxfld is set to 10.
The variables pertaining to each potential are described in table 4.17.

4.1.3.7 Closing the FIELD File

The FIELD file must be closed with the directive:

close

c©CCLRC 134

Table 4.17: External fields
key potential type Variables (1-4) functional form†

elec Electric field Ex Ey Ez F = q.E

oshm Oscillating Shear A n F x = Acos(2nπ.z/Lz)

shrx Continuous Shear A z0 | z |> z0: vx = (1/2)A(| z | /z)

grav Gravitational Field Gx Gy Gz F = m.G

magn Magnetic Field Hx Hy Hz F = q(v ×H)

sphr Containing Sphere A R0 n Rcut r > Rcut: F = A(R0 − r)−n

zbnd Repulsive wall A Z0 f = ±1 zf > Z0f : Fz = −A(z − Z0)
(harmonic)

which signals the end of the force field data. Without this directive DL POLY 2 will
abort.

4.1.4 The REVOLD File

This file contains statistics arrays from a previous job. It is not required if the current job
is not a continuation of a previous run (ie. if the restart directive is not present in the
CONTROL file - see above). The file is unformatted and therefore not readable by normal
people. DL POLY 2 normally produces the file REVIVE (see section 4.2.4) at the end of
a job which contains the statistics data. REVIVE should be copied to REVOLD before a
continuation run commences. This may be done by the copy macro supplied in the execute
sub-directory of DL POLY 2 .

4.1.4.1 Format

The REVOLD file is unformatted. All variables appearing are written in native real*8
representation. Nominally integer quantities (e.g. the timestep number nstep) are repre-
sented by the the nearest real number. The contents are as follows (the dimensions of array
variables are given in brackets and are defined in the appropriate Fortran modules).

record 1:
nstep timestep of final configuration
numacc number of configurations used in averages
numrdf number of configurations used in rdf averages
chit relaxation time of thermostat

c©CCLRC 135

chip relaxation time of barostat
conint conserved quantity for selected ensemble
nzden number of configurations used in z density

record 2:
virtot total system virial
vircom rigid body COM virial
eta scaling factors for simulation cell matrix elements (9)
strcns constraint stress tensor elements (9)
strbod rigid body stress tensor elements (9)

record 3:
stpval instantaneous values of thermodynamic variables (mxnstk)

record 4:
sumval average values of thermodynamic variables (mxnstk)

record 5:
ssqval fluctuation (squared) of thermodynamic variables (mxnstk)

record 6:
zumval running totals of thermodynamic variables (mxnstk)

record 7:
ravval rolling averages of thermodynamic variables (mxnstk)

record 8:
stkval stacked values of thermodynamic variables (mxstak×mxnstk)

record 9:
xx0 x component of atomic displacement (MSD) (mxatms)
yy0 y component of atomic displacement (MSD) (mxatms)
zz0 z component of atomic displacement (MSD) (mxatms)

record 10:
xxs x-coordinates of tether points (mxatms)
yys y-coordinates of tether points (mxatms)
zzs z-coordinates of tether points (mxatms)

record 11:
rdf (Optional) RDF array (mxrdf×mxvdw)

record 12:
zdens (Optional) z-density array (mxrdf×mxsvdw)

4.1.4.2 Further Comments

Note that recompiling DL POLY 2 with a different dl params.inc file, may render any
existing REVOLD file unreadable by the code.

4.1.5 The TABLE File

The TABLE file provides an alternative way of reading in the short range potentials - in
tabular form. This is particularly useful if an analytical form of the potential does not exist

c©CCLRC 136

or is too complicated to specify in the forgen subroutine. The table file is read by the
subroutine fortab.f in the vdw terms.f file..

The option of using tabulated potentials is specified in the FIELD file (see above). The
specific potentials that are to be tabulated are indicated by the use of the tab keyword
on the record defining the short range potential (see table 4.12). The directive vdwtable
may be used in place of vdw to indicate that one or more of the short ranged potentials is
specified in the form of a table.

4.1.5.1 Format

The file is fixed-formatted with integers as “i10”, reals as “e15.8”. Character variables are
read as “a8”. The header record is formatted as 80 alphanumeric characters.

4.1.5.2 Definitions of Variables

record 1
header a80 file header

record 2
delpot real mesh resolution in Å
cutpot real cutoff used to define tables Å
ngrid integer number of grid points in tables

The subsequent records define each tabulated potential in turn, in the order indicated by
the specification in the FIELD file. Each potential is defined by a header record and a set
of data records with the potential and force tables.

header record:
atom 1 a8 first atom type
atom 2 a8 second atom type

potential data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

force data records: (number of data records = Int((ngrid+3)/4))
data 1 real data item 1
data 2 real data item 2
data 3 real data item 3
data 4 real data item 4

4.1.5.3 Further Comments

It should be noted that the number of grid points in the TABLE file should not be less than
the number of grid points DL POLY 2 is expecting. (This number is given by the param-

c©CCLRC 137

eter mxgrid, which is defined in the parset.f subroutine in the setup program.f file.)
DL POLY 2 will re-interpolate the tables if ngrid≥mxgrid, but will abort if ngrid<mxgrid.

The potential and force tables are used to fill the internal arrays vvv and ggg respectively
(see section 2.3.1). The contents of force arrays are derived from the potential via the
formula:

G(r) = −r
∂

∂r
U(r).

Note this is not the same as the true force.
Important The potential and force arrays in the TABLE file are written in the same

units as the FIELD file. So if you specified a particular unit using the UNITS directive
in the FIELD file, the same units are expected here. It is useful to note that the definition
of the force arrays given above means that the units are the same as for the potential - i.e.
are handled using the same conversion factors.

c©CCLRC 138

4.2 The OUTPUT Files

DL POLY 2 produces up to seven output files: HISTORY, OUTPUT, REVCON, REVIVE,
RDFDAT, ZDNDAT and STATIS. These respectively contain: a dump file of atomic co-
ordinates, velocities and forces; a summary of the simulation; the restart configuration;
statistics accumulators; radial distribution data, Z-density data and a statistical history.

4.2.1 The HISTORY File

The HISTORY file is the dump file of atomic coordinates, velocities and forces. Its principal
use is for off-line analysis. The file is written by the subroutines traject or traject u.
The control variables for this file are ltraj, nstraj, istraj and keytrj which are cre-
ated internally, based on information read from the traj directive in the CONTROL file
(see above). The HISTORY file will be created only if the directive traj appears in the
CONTROL file. Note that the HISTORY file can be written in either a formatted or
unformatted version. We describe each of these separately below.

The HISTORY file can become very large, especially if it is formatted. For serious
simulation work it is recommended that the file be written to a scratch disk capable of
accommodating a large data file. Alternatively the file may be written as unformatted
(below), which has the additional advantage of speed. However, writing an unformatted
file has the disadvantage that the file may not be readily readable except by the machine
on which it was created. This is particularly important if graphical processing of the data
is required.

4.2.1.1 The Formatted HISTORY File

The formatted HISTORY file is written by the subroutine traject and has the following
structure.

record 1 (a80)
header a80 file header

record 2 (3i10)
keytrj integer trajectory key (see table 4.3)
imcon integer periodic boundary key (see table 4.6)
natms integer number of atoms in simulation cell

For timesteps greater than nstraj the HISTORY file is appended at intervals speci-
fied by the traj directive in the CONTROL file, with the following information for each
configuration:

record i (a8,4i10,f12.6)
timestep a8 the character string “timestep”
nstep integer the current time-step
natms integer number of atoms in configuration
keytrj integer trajectory key (again)

c©CCLRC 139

imcon integer periodic boundary key (again)
tstep real integration timestep

record ii (3g12.4) for imcon > 0
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector

record iii (3g12.4) for imcon > 0
cell(4) real x component of b cell vector
cell(5) real y component of b cell vector
cell(6) real z component of b cell vector

record iv (3g12.4) for imcon > 0
cell(7) real x component of c cell vector
cell(8) real y component of c cell vector
cell(9) real z component of c cell vector

This is followed by the configuration for the current timestep. i.e. for each atom in the
system the following data are included:

record a (a8,i10,2f12.6)
atmnam a8 atomic label
iatm i10 atom index
weight f12.6 atomic mass (a.m.u.)
charge f12.6 atomic charge (e)

record b (3e12.4)
xxx real x coordinate
yyy real y coordinate
zzz real z coordinate

record c (3e12.4) only for keytrj > 0
vxx real x component of velocity
vyy real y component of velocity
vzz real z component of velocity

record d (3e12.4) only for keytrj > 1
fxx real x component of force
fyy real y component of force
fzz real z component of force

Thus the data for each atom is a minimum of two records and a maximum of 4.

4.2.1.2 The Unformatted HISTORY File

The unformatted HISTORY file is written by the subroutine traject u and has the fol-
lowing structure:

c©CCLRC 140

record 1
header configuration name (character*80)

record 2
natms number of atoms in the configuration (real*8)

record 3
atname(1,...,natms) atom names or symbols (character*8)

record 4
weight(1,...,natms) atomic masses (real*8)

record 5
charge(1,...,natms) atomic charges (real*8)

For time-steps greater than nstraj, the HISTORY file is appended, at intervals specified
by the traj directive in the CONTROL file, with the following information:

record i
nstep the current time-step (real*8)
natms number of atoms in configuration (real*8)
keytrj trajectory key (real*8)
imcon image convention key (real*8)
tstep integration timestep (real*8)

record ii for imcon > 0
cell(1,...,9) a, b and c cell vectors (real*8)

record iii
xxx(1,...,natms) atomic x-coordinates (real*8)

record iv
yyy(1,...,natms) atomic y-coordinates (real*8)

record v
zzz(1,...,natms) atomic z-coordinates (real*8)

record vi only for keytrj> 0
vxx(1,...,natms) atomic velocities x-component (real*8)

record vii only for keytrj> 0
vyy(1,...,natms) atomic velocities y-component (real*8)

record viii only for keytrj> 0
vzz(1,...,natms) atomic velocities z-component (real*8)

record ix only for keytrj> 1
fxx(1,...,natms) atomic forces x-component (real*8)

record x only for keytrj> 1
fyy(1,...,natms) atomic forces y-component (real*8)

record xi only for keytrj> 1
fzz(1,...,natms) atomic forces z-component (real*8)

Note the implied conversion of integer variables to real on record i.

c©CCLRC 141

4.2.2 The OUTPUT File

The job output consists of 7 sections: Header; Simulation control specifications; Force
field specification; Summary of the initial configuration; Simulation progress; Summary
of statistical data; Sample of the final configuration; and Radial distribution functions.
These sections are written by different subroutines at various stages of a job. Creation of
the OUTPUT file always results from running DL POLY 2 . It is meant to be a human
readable file, destined for hardcopy output.

4.2.2.1 Header

Gives the DL POLY 2 version number, the number of processors used and a title for the
job as given in the header line of the input file CONTROL. This part of the file is written
from the subroutines dlpoly and simdef

4.2.2.2 Simulation Control Specifications

Echoes the input from the CONTROL file. Some variables may be reset if illegal values
were specified in the CONTROL file. This part of the file is written from the subroutine
simdef.

4.2.2.3 Force Field Specification

Echoes the FIELD file. A warning line will be printed if the system is not electrically
neutral. This warning will appear immediately before the non-bonded short-range potential
specifications. This part of the file is written from the subroutine sysdef.

4.2.2.4 Summary of the Initial Configuration

This part of the file is written from the subroutine sysgen. It states the periodic boundary
specification, the cell vectors and volume (if appropriate) and the initial configuration of
(a maximum of) 20 atoms in the system. The configuration information given is based on
the value of levcfg in the CONFIG file. If levcfg is 0 (or 1) positions (and velocities) of
the 20 atoms are listed. If levcfg is 2 forces are also written out.

For periodic systems this is followed by the long range corrections to the energy and
pressure.

4.2.2.5 Simulation Progress

This part of the file is written by the DL POLY 2 root segment dlpoly. The header line
is printed at the top of each page as:

--

step eng_tot temp_tot eng_cfg eng_vdw eng_cou eng_bnd eng_ang eng_dih eng_tet

time(ps) eng_pv temp_rot vir_cfg vir_vdw vir_cou vir_bnd vir_ang vir_con vir_tet

cpu (s) volume temp_shl eng_shl vir_shl alpha beta gamma vir_pmf press

c©CCLRC 142

--

The labels refer to :

line 1
step MD step number
eng tot total internal energy of the system
temp tot system temperature
eng cfg configurational energy of the system
eng vdw configurational energy due to short-range potentials
eng cou configurational energy due to electrostatic potential
eng bnd configurational energy due to chemical bond potentials
eng ang configurational energy due to valence angle and three-body potentials
eng dih configurational energy due to dihedral inversion and four-body potentials
eng tet configurational energy due to tethering potentials

line 2
time(ps) elapsed simulation time (ps) since the beginning of the job
eng pv enthalpy of system
temp rot rotational temperature
vir cfg total configurational contribution to the virial
vir vdw short range potential contribution to the virial
vir cou electrostatic potential contribution to the virial
vir bnd chemical bond contribution to the virial
vir ang angular and three body potentials contribution to the virial
vir con constraint bond contribution to the virial
vir tet tethering potential contribution to the virial

line 3
cpu (s) elapsed cpu time since the beginning of the job
volume system volume
temp shl core-shell temperature
eng shl configurational energy due to core-shell potentials
vir shl core-shell potential contribution to the virial
alpha angle between b and c cell vectors
beta angle between c and a cell vectors
gamma angle between a and b cell vectors
vir pmf Potential of mean force constraint contribution to the virial
press pressure

Note: The total internal energy of the system (variable tot energy) includes all contri-
butions to the energy (including system extensions due to thermostats etc.) It is nominally
the conserved variable of the system, and is not to be confused with conventional system
energy, which is a sum of the kinetic and configuration energies.

The interval for printing out these data is determined by the directive print in the
CONTROL file. At each time-step that printout is requested the instantaneous values of

c©CCLRC 143

the above statistical variables are given in the appropriate columns. Immediately below
these three lines of output the rolling averages of the same variables are also given. The
maximum number of time-steps used to calculate the rolling averages is determined by the
parameter mxstak defined in the parset.f subroutine of the setup program./f file. The
working number of time-steps for rolling averages is controlled by the directive stack in file
CONTROL (see above). The default value is mxstak.

Energy Units: The energy unit for the data appearing in the OUTPUT is defined by
the units directive appearing in the CONTROL file.

Pressure units: The unit of pressure is k atm, irrespective of what energy unit is chosen.

4.2.2.6 Summary of Statistical Data

This portion of the OUTPUT file is written from the subroutine result. The number of
time-steps used in the collection of statistics is given. Then the averages over the production
portion of the run are given for the variables described in the previous section. The root
mean square variation in these variables follow on the next two lines. The energy and
pressure units are as for the preceeding section.

Also provided in this section is an estimate of the diffusion coefficient for the different
species in the simulation, which is determined from a single time origin and is therefore
very approximate. Accurate determinations of the diffusion coefficients can be obtained
using the msd utility program, which processes the HISTORY file (see chapter 6).

If an NPT or NσT simulation is performed the OUTPUT file also provides the mean
stress (pressure) tensor and mean simulation cell vectors.

4.2.2.7 Sample of Final Configuration

The positions, velocities and forces of the 20 atoms used for the sample of the initial
configuration (see above) are given. This is written by the subroutine result.

4.2.2.8 Radial Distribution Functions

If both calculation and printing of radial distribution functions have been requested (by
selecting directives rdf and print rdf in the CONTROL file) radial distribution functions
are printed out. This is written from the subroutine rdf1. First the number of time-steps
used for the collection of the histograms is stated. Then each function is given in turn. For
each function a header line states the atom types (‘a’ and ‘b’) represented by the function.
Then r, g(r) and n(r) are given in tabular form. Output is given from 2 entries before the
first non-zero entry in the g(r) histogram. n(r) is the average number of atoms of type ‘b’
within a sphere of radius r around an atom of type ‘a’. Note that a readable version of
these data is provided by the RDFDAT file (below).

c©CCLRC 144

4.2.2.9 Z Density Profile

If both calculation and printing of Z density profiles has been requested (by selecting direc-
tives zden and print rdf in the CONTROL file Z density profiles are printed out as the
last part of the OUTPUT file. This is written by the subroutine zden1. First the number
of time-steps used for the collection of the histograms is stated. Then each function is given
in turn. For each function a header line states the atom type represented by the function.
Then z, ρ(z) and n(z) are given in tabular form. Output is given from Z = [−L/2, L/2]
where L is the length of the MD cell in the Z direction and ρ(z) is the mean number density.
n(z) is the running integral from −L/2 to z of (xy cell area)ρ(s)ds. Note that a readable
version of these data is provided by the ZDNDAT file (below).

4.2.3 The REVCON File

This file is formatted and written by the subroutine revive. REVCON is the restart con-
figuration file. The file is written every ndump time steps in case of a system crash during
execution and at the termination of the job. A successful run of DL POLY 2 will always
produce a REVCON file, but a failed job may not produce the file if an insufficient number
of timesteps have elapsed. ndump is a parameter defined in the parset.f subroutine of the
setup program.f file found in the srcf90 directory of DL POLY 2 . Changing ndump ne-
cessitates recompiling DL POLY 2 . REVCON is identical in format to the CONFIG input
file (see section 4.1.2). REVCON should be renamed CONFIG to continue a simulation
from one job to the next. This is done for you by the copy macro supplied in the execute
directory of DL POLY 2 .

4.2.4 The REVIVE File

This file is unformatted and written by the subroutine revive. It contains the accumulated
statistical data. It is updated whenever the file REVCON is updated (see previous section).
REVIVE should be renamed REVOLD to continue a simulation from one job to the next.
This is done by the copy macro supplied in the execute directory of DL POLY 2 . In
addition, to continue a simulation from a previous job the restart keyword must be included
in the CONTROL file.

The format of the REVIVE file is identical to the REVOLD file described in section
4.1.4.

4.2.5 The RDFDAT File

This is a formatted file containing em Radial Distribution Function (RDF) data. Its con-
tents are as follows:

record 1
cfgname character (A80) configuration name

record 2
ntpvdw integer (i10) number of RDFs in file

c©CCLRC 145

mxrdf integer (i10) number of data points in each RDF

There follow the data for each individual RDF i.e. ntpvdw times. The data supplied
are as follows:

first record
atname 1 character (A8) first atom name
atname 2 character (A8) second atom name

following records (mxrdf records)
radius real (e14) interatomic distance (A)
g(r) real (e14) RDF at given radius.

Note the RDFDAT file is optional and appears when the print rdf option is specified in
the CONTROL file.

4.2.6 The ZDNDAT File

This is a formatted file containing the Z-density data. Its contents are as follows:

record 1
cfgname character (A80) configuration name

record 2
mxrdf integer (i10) number of data points in the Z-density function

following records (mxrdf records)
z real (e14) distance in z direction (A)
ρ(z) real (e14) Z-density at given height z

Note the ZDNDAT file is optional and appears when the print rdf option is specified
in the CONTROL file.

4.2.7 The STATIS File

The file is formatted, with integers as “i10” and reals as “e14.6”. It is written by the
subroutine static. It consists of two header records followed by many data records of
statistical data.

record 1
cfgname character configuration name

record 2
string character energy units

c©CCLRC 146

Data records
Subsequent lines contain the instantaneous values of statistical variables dumped from
the array stpval. A specified number of entries of stpval are written in the format
“(1p,5e14.6)”. The number of array elements required (determined by the parameter
mxnstk in the dl params.inc file) is

mxnstk ≥ 27 + ntpatm(number of unique atomic sites)
+9(if stress tensor calculated)

+9(if constant pressure simulation requested)

The STATIS file is appended at intervals determined by the stats directive in the CON-
TROL file. The energy unit is as specified in the CONTROL file with the the units
directive, and are compatible with the data appearing in the OUTPUT file. The contents
of the appended information is:

record i
nstep integer current MD time-step
time real elapsed simulation time = nstep×∆t
nument integer number of array elements to follow

record ii stpval(1) – stpval(5)
engcns real total extended system energy

(i.e. the conserved quantity)
temp real system temperature
engcfg real configurational energy
engsrp real VdW/metal/Tersoff energy
engcpe real electrostatic energy

record iii stpval(6) – stpval(10)
engbnd real chemical bond energy
engang real valence angle/3-body potential energy
engdih real dihedral/inversion/four body energy
engtet real tethering energy
enthal real enthalpy (total energy + PV)

record iv stpval(11) – stpval(15)
tmprot real rotational temperature
vir real total virial
virsrp real VdW/metal/Tersoff virial
vircpe real electrostatic virial
virbnd real bond virial

record v stpval(16) -stpval(20)
virang real valence angle/3-body virial
vircon real constraint virial
virtet real tethering virial
volume real volume
tmpshl real core-shell temperature

c©CCLRC 147

record vi stpval(21) -stpval(25)
engshl real core-shell potential energy
virshl real core-shell virial
alpha real MD cell angle α
beta real MD cell angle β
gamma real MD cell angle γ

record vii stpval(26) -stpval(27)
virpmf real Potential of Mean Force virial
press real pressure

the next ntpatm entries
amsd(1) real mean squared displacement of first atom types
amsd(2) real mean squared displacement of second atom types
...
amsd(ntpatm) real mean squared displacement of last atom types

the next 9 entries - if the stress tensor is calculated
stress(1) real xx component of stress tensor
stress(2) real xy component of stress tensor
stress(3) real xz component of stress tensor
stress(4) real yx component of stress tensor
... real ...
stress(9) real zz component of stress tensor

the next 9 entries - if a NPT simulation is undertaken
cell(1) real x component of a cell vector
cell(2) real y component of a cell vector
cell(3) real z component of a cell vector
cell(4) real x component of b cell vector
... real ...
cell(9) real z component of c cell vector

Note. The stress tensor is calculated only if the code is compiled with the “-STRESS”
option (see section 3.2.1). Cell shape varying constant pressure simulations (keyword en-
semble nst ... in the CONTROL file) are only possible if the stress tensor is calculated.
If isotropic constant pressure simulations are required, where the cell volume but not the
shape may vary, (keyword ensemble npt ...) the stress tensor need not be calculated.

Chapter 5

DL POLY 2 Examples

148

c©CCLRC 149

Scope of Chapter

This chapter describes the standard test cases for DL POLY 2 , the input and output files
for which are in the data sub-directory.

c©CCLRC 150

5.1 DL POLY Examples

5.1.1 Test Cases

The following example data sets (both input and output) are stored in the subdirectory
data. Two versions are provided for the Leapfrog (LF) and Velocity Verlet (VV) algorithms
respectively, so that you may check that your version of DL POLY is working correctly. All
the jobs are short and should require no more than a few minutes execution time, even on
a single processor computer. he test cases can be chosen by typing

select n a
from the execute directory, where n is the number of the test case and a is either LF or VV.
The select macro will copy the appropriate CONTROL, CONFIG, and FIELD files to the
execute directory ready for execution. The output files OUTPUT, REVCON and STATIS
may be compared with the files supplied in the data directory.

The example output files provided in the data directory were obtained on 8 processors of
a Cray XD1 parallel system. The program was compiled with the three point interpolation
option.

It should be noted that the potentials and the simulation conditions used in the following
test cases are chosen to demonstrate functionality only. They are not necessarily ap-
propriate for serious simulation of the test systems. Note also that the DL POLY 2
Graphical User Interface [8] provides a convenient means for running and viewing these test
cases.

5.1.1.1 Test Case 1: KNaSi2O5

Potassium Sodium disilicate glass (NaKSi2O5) using two and three body potentials. Some
of the two body potentials are read from the TABLE file. Electrostatics are handled by
a multiple timestep Ewald sum method. Cubic periodic boundaries are in use. NVE
ensemble.

5.1.1.2 Test Case 2: Metal simulation with Sutton Chen potentials

FCC Aluminium using Sutton-Chen potentials. Temperature is controlled by the method
of Gaussian constraints. NVT Evans ensemble.

5.1.1.3 Test Case 3: An antibiotic in water

Valinomycin in 1223 spc water molecules. The temperature is controlled by a Nosé-Hoover
thermostat while electrostatics are handled by a shifted Coulombic potential. The water
is defined as a rigid body while bond constraints are applied to all chemical bonds in the
valinomycin. Truncated octahedral boundary conditions are used. NVT Hoover ensemble.

5.1.1.4 Test Case 4: Shell model of water

256 molecules of water with a polarizable oxygen atom using adiabatic dynamics. Tem-
perature is controlled by the Berendsen thermostat while electrostatics are handled by the

c©CCLRC 151

reaction field method with a “charge group” cutoff scheme. “Slab” period boundary condi-
tions are used. The water molecule (apart from the shell) is treated as a rigid body. NVT
Berendsen ‘ensemble’.

5.1.1.5 Test Case 5: Shell model of MgCl2 at constant pressure

Adiabatic shell model simulation of MgCl2. Temperature and pressure are controlled by a
Berendsen thermostat and barostat. An Ewald sum is used with cubic periodic boundary
conditions. NPT Berendsen ‘ensemble’.

5.1.1.6 Test Case 6: PMF calculation

Potential of mean force calculation of a potassium ion in SPC water. Electrostatics are
handled by the Ewald sum. The water is treated as a constrained triangle. PMF ‘ensemble’

5.1.1.7 Test Case 7: Linked rigid bodies

8 biphenyl molecules in cubic boundary conditions. Each phenyl ring is treated as a rigid
body, with a constraint bond to the other ring of the molecule. In the centre of each ring
are three massless charge sites which imparts a quadrupole moment to the ring. NVE
ensemble.

5.1.1.8 Test Case 8: An osmosis experiment with a semi permeable membrane

The membrane is a collection of tethered sites interconnected by harmonic springs. There
are no electrostatic forces in the system. The simulation is run with the Hoover anisotropic
constant presure algorithm. (NST Hoover ensemble.)

5.1.1.9 Test Case 9: A surfactant at the air-water interface

The system is comprised of 32 surfactant molecules (trimethylaminododecane bromide or
TAB-C12) arranged either side of a slab of 342 water molecules approximately 30 Å thick.
The surfactant chains are treated with rigid bonds and the water molecules are treated as
rigid bodies. The TAB headgroup has fractional charges summing to +1 (the bromide ion
has charge -1). The Ewald sum handles the electrostatic calculations. The short range
forces are taken from the Dreiding force field. NVE ensemble.

5.1.1.10 Test Case 10: DNA strand in water

This system consists of a strand of DNA 1260 atoms in length in a solution of 706 (SPC) wa-
ter molecules. The DNA is aligned in the Z-direction and hexagonal prism periodic bound-
ary conditions applied. The electrostatic interactions are calculated using the Smoothed
Particle Mesh Ewald method. Note that the system has a strong overall negative charge
which is strongly anisotropic in distribution. The short range forces are taken from the
Dreiding force field, and constraints are used for all covalent bonds. For simplicity H-bonds
are treated as harmonic bonds with an equilibrium bondlength of 1.724 Å. NVE ensemble.

c©CCLRC 152

5.1.1.11 Test Case 11: Hautman-Klein test case 1

The system consists of 100 short chain surfactant molecules in a layer simulated under NVE
conditions . The total system size is 2300 atoms and the XY periodicity is a square. The
Dreiding force field describes the molecular interactions. All bonds are harmonic and all
atoms are explicit. The link-cell algorithm is in operation. NVE ensemble.

5.1.1.12 Test Case 12: Hautman-Klein test case 2

This is a simple test system consisting of 1024 charged particles in a layer under NVE
conditions. Lennard Jones forces are used to keep the atoms apart. The similation cell is
square in the XY plane. NVE ensemble.

5.1.1.13 Test Case 13: Carbon Nanotube with Tersoff potential

This system consists of 800 carbon atoms in a nanotube 41.7 A in length. The MD cell is
orthorhombic and square in the XY plane. The integration algorithm is NPT Berendsen.
This is a test for the Tersoff potential . NPT Berendsen ‘ensemble’.

5.1.1.14 Test Case 14: Carbon Diamond with Tersoff potential

This is another test of the Tersoff potential , this time for the carbon diamond structure
consisting of 512 atoms. A cubic MD cell is used with a NST Hoover integration algorithm.
NST Hoover ensemble.

5.1.1.15 Test Case 15: Silicon Carbide with Tersoff potential

This is an alloy system consisting of 2744 atoms of silicon carbide in a diamond structure.
The potential function used is the Tersoff potential . The integration algorithm is NPT
Hoover and the initial MD cell is cubic. NPT Hoover ensemble.

5.1.1.16 Test Case 16: Magnesium Oxide with relaxed shell model

Relaxed shell model of magnesium oxide with 324 sites. The lattice is cubic and the
integration algorithm is NST Berendsen. NST Berendsen ‘ensemble’.

5.1.1.17 Test Case 17: Sodium ion in SPC water

A simple simulation of a sodium ion in 140 SPC water molecules (421 sites in all). The
water molecules are treated as rigid bodies.The algorithm is the NVE ensemble and the
Ewald sum handles the electrostatic forces. The MD box is cubic. NVE ensemble.

5.1.1.18 Test Case 18: Sodium chloride molecule in SPC water

This system resembles test case 17, except that a sodium chloride ion pair is dissolved in
139 SPC water molecules (419 sites in all). The MD cell is cubic and the water molecules

c©CCLRC 153

are treated by constraint dynamics in the NVE Evans scheme. Ewald’s method handles
the electrostatics. NVT Evans ensemble.

5.1.1.19 Test Case 19: Sodium chloride molecule in SPC water

This is a repeat of test case 18, except that half of the water molecules are treated using
constraint dynamics and the rest by rigid body dynamics. The integration algorithm is
NPT Hoover. NPT Hoover ensemble.

5.1.1.20 Test Case 20: Linked benzene ring molecules

This test consists of pairs of benzene rings linked via a rigid (constraint) bond. Each
molecule has 22 atoms and there are 81 molecules, making a total of 1782 sites. The
benzene rings are treated in a variety of ways in the same system. In one third of cases
the benzene rings and hydrogens form rigid groups. In another third the carbon rings are
rigid but the C-H bonds are treated via constraints. In the final third, the C-H bonds are
fully flexible and the rings are rigid. The MD cell is orthorhombic (nearly cubic) and the
integration is NPT hoover. NPT Hoover ensemble.

5.1.2 Benchmark Cases

These represent rather larger test cases for DL POLY 2 that are also suitable for bench-
marking the code on large scale computers. They have been selected to show fairly the the
capabilities and limitations of the code.

5.1.2.1 Benchmark 1

Simulation of metallic aluminium at 300K using a Sutton-Chen density dependent potential.
The system is comprised of 19652 identical atoms. The simulation runs on 16 to 512
processors only.

5.1.2.2 Benchmark 2

Simulation of a 15-peptide in 1247 water molecules. This was designed as an AMBER
comparison. The system consists of 3993 atoms in all and runs on 8-512 processors. It
uses neutral group electrostatics and rigid bond constraints and is one of the smallest
benchmarks in the set.

5.1.2.3 Benchmark 3

Simulation of the enzyme transferrin in 8102 water molecules. The simulation makes use
of neutral group electrostatics and rigid bond constraints. The system is 27539 atoms and
runs on 8-512 processors.

c©CCLRC 154

5.1.2.4 Benchmark 4

Simulation of a sodium chloride melt with Ewald sum electrostatics and a multiple timestep
algorithm to enhance performance. The system is comprised of 27000 atoms and runs on
8-512 processors.

5.1.2.5 Benchmark 5

Simulation of a sodium-potassium disilicate glass. Uses Ewald sum electrostatics, a mul-
tiple timestep algorithm and a three-body valence angle potentials to support the silicate
structure. It also using tabluated two-body potentials stored in the file TABLE. The system
is comprised of 8640 atoms and runs on 16-512 processors.

5.1.2.6 Benchmark 6

Simulation of a potassium-valinomycin complex in 1223 water molecules using an adapted
AMBER forcefield and truncated octahedral periodic boundary conditions. The system
size is 3838 atoms and runs on 16-512 processors.

5.1.2.7 Benchmark 7

Simulation of gramicidin A molecule in 4012 water molecules using neutral group elec-
trostatics. The system is comprised of 12390 atoms and runs on 8-512 processors. This
example was provided by Lewis Whitehead at the University of Southampton.

5.1.2.8 Benchmark 8

Simulation of an isolated magnesium oxide microcrystal comprised of 5416 atoms originally
in the shape of a truncated octahedron. Uses full coulombic potential. Runs on 16-512
processors.

5.1.2.9 Benchmark 9

Simulation of a model membrane with 196 41-unit membrane chains, 8 valinomycin molecules
and 3144 water molecules using an adapted AMBER potential, multiple timestep algorithm
and Ewald sum electrostatics. The system is comprised of 18866 atoms and runs on 8-512
processors.

Chapter 6

DL POLY 2 Utilities

155

c©CCLRC 156

Scope of Chapter

This chapter describes the more important utility programs and subroutines of DL POLY 2
, found in the sub-directory utility. A more complete description of the sub-directory
contents is to be found in the DL POLY 2 Reference Manual.

6.1 Miscellaneous Utilities

6.1.1 Useful Macros

6.1.1.1 Macros

Macros are simple executable files containing standard unix commands. A number of the
are supplied with DL POLY and are found in the execute sub-directory. The available
macros are as follows.

• cleanup

• copy

• gopoly

• gui

• select

• store

The function of each of these is described below. It is worth noting that most of these
functions can be performed by the DL POLY 2 java GUI [8].

6.1.1.2 cleanup

cleanup removes several standard data files from the execute sub-directory. It contains the
unix commands:

rm OUTPUT REVCON REVOLD STATIS REVIVE gopoly.*

and removes the files OUTPUT, REVCON, REVOLD, STATIS, REVIVE and gopoly.* (all
variants). It is useful for cleaning the sub-directory up after a run. (Useful data should be
stored elsewhere however!)

6.1.1.3 copy

copy invokes the unix commands:

mv CONFIG CONFIG.OLD
mv REVCON CONFIG
mv REVIVE REVOLD

c©CCLRC 157

which collectively prepare the DL POLY files in the execute sub-directory for the continu-
ation of a simulation. It is always a good idea to store these files elsewhere in addition to
using this macro.

6.1.1.4 gopoly

gopoly is used to submit a DL POLY job to the Daresbury IBM SP/2, which operates a
LOADLEVELLER job queuing system. It invokes the following script.

#@ min_processors = 4
#@ max_processors = 4
#@ job_type = parallel
#@ requirements = (Adapter == "hps_ip") && (Pool == 2)
#@ executable = /usr/bin/poe
#@ cpu_limit = 00:10:00
#@ arguments = ~/dl_poly_2.10/execute/DLPOLY.X -euilib ip
#@ output = gopoly.o
#@ error = gopoly.e
#@ class = dev
#@ queue

Using LOADLEVELLER, the job is submitted by the unix command:

llsubmit gopoly

where llsubmit is a local command for submission to the SP/2. The number of required
nodes and the job time are indicated in the above script.

6.1.1.5 gui

gui is a macro that starts up the DL POLY 2 Java GUI. It invokes the following unix
commands:

java -jar ../java/GUI.jar

In other words the macro invokes the Java Virtual Machine which executes the instruc-
tions in the Java archive file GUI.jar, which is stored in the java subdirectory of DL POLY 2
. (Note: Java 1.3.0 or a higher version is required to run the GUI.)

6.1.1.6 select

select is a macro enabling easy selection of one of the test cases. It invokes the unix
commands:

c©CCLRC 158

cp ../data/TEST$1/$2/CONTROL CONTROL
cp ../data/TEST$1/$2/FIELD FIELD
cp ../data/TEST$1/$2/CONFIG CONFIG
cp ../data/TEST$1/$2/TABLE TABLE

select requires two arguments to be specified:

select n a

where n is the (integer) test case number, which ranges from 1 to 20 and a is the charac-
ter string LF or VV according to which algorithm leapfrog (LF)or velcioty Verlet (VV) is
required.

This macro sets up the required input files in the execute sub-directory to run the n-th
test case.

6.1.1.7 store

The store macro provides a convenient way of moving data back from the execute sub-
directory to the data sub-directory. It invokes the unix commands:

mkdir ../data/TEST$1
mkdir ../data/TEST$1/$2
mv OUTPUT ../data/TEST$1/$2/OUTPUT
mv REVCON ../data/TEST$1/$2/REVCON
mv STATIS ../data/TEST$1/$2/STATIS
mv REVIVE ../data/TEST$1/$2/REVIVE
mv RDFDAT ../data/TEST$1/$2/RDFDAT
mv ZDNDAT ../data/TEST$1/$2/ZDNDAT
chmod 400 ../data/TEST$1/$2/*

which first creates a new DL POLY data/TEST.. sub-directory and then moves the stan-
dard DL POLY output data files into it.

store requires two arguments:

store n a

where n is a unique string or number to label the output data in the data/TESTn sub-
directory and a is a string: LF or VV according to the integration algorithm (leafrog - LF
or velocity Verlet - VV).

Note that store sets the file access to read-only. This is to prevent the store macro
overwriting existing data without your knowledge.

Bibliography

[1] Smith, W., and Forester, T., 1996, J. Molec. Graphics, 14, 136. 3

[2] Smith, W., 1987, Molecular Graphics, 5, 71. 3

[3] Sutton, A. P., and Chen, J., 1990, Philos. Mag. Lett., 61, 139. 4, 38, 82, 131

[4] Tersoff, J., 1989, Phys. Rev. B, 39, 5566. 4, 35, 132

[5] van Gunsteren, W. F., and Berendsen, H. J. C. 1987, Groningen Molecular Simu-
lation (GROMOS) Library Manual. BIOMOS, Nijenborgh, 9747 Ag Groningen, The
Netherlands. Standard GROMOS reference. 4, 16

[6] Mayo, S., Olafson, B., and Goddard, W., 1990, J. Phys. Chem., 94, 8897. 4, 16, 34,
130

[7] Weiner, S. J., Kollman, P. A., Nguyen, D. T., and Case, D. A., 1986, J. Comp. Chem.,
7, 230. 4, 16

[8] Smith, W., 2003, Daresbury Laboratory. 5, 11, 87, 96, 98, 115, 150, 156

[9] Smith, W., and Forester, T. R., 1994, Comput. Phys. Commun., 79, 52. 5

[10] Smith, W., and Forester, T. R., 1994, Comput. Phys. Commun., 79, 63. 5, 58, 59

[11] Allen, M. P., and Tildesley, D. J. 1989, Computer Simulation of Liquids. Oxford:
Clarendon Press. 5, 17, 45, 54, 57, 60, 78, 80

[12] Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., 1977, J. Comput. Phys., 23,
327. 5, 57, 79

[13] Andersen, H. C., 1983, J. Comput. Phys., 52, 24. 5, 59

[14] Fincham, D., 1992, Molecular Simulation, 8, 165. 5, 55, 71

[15] Miller, T., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., and Martyna, G.,
2002, J. Chem. Phys., 116, 8649. 5, 56, 71, 72

[16] Forester, T., and Smith, W., 1998, J Computational Chemistry, 19, 102. 6, 55, 56, 74

159

c©CCLRC 160

[17] Martyna, G., Tuckerman, M., Tobias, D., and Klein, M., 1996, Molecular Physics, 87,
1117. 6, 61, 72

[18] Evans, D. J., and Morriss, G. P., 1984, Computer Physics Reports, 1, 297. 6, 55, 56,
60

[19] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W., DiNola, A., and Haak,
J. R., 1984, J. Chem. Phys., 81, 3684. 6, 55, 56, 60

[20] Hoover, W. G., 1985, Phys. Rev., A31, 1695. 6, 55, 56, 60

[21] Jorgensen, W. L., Madura, J. D., and Swenson, C. J., 1984, J. Amer. Chem. Soc, 106,
6638. 16

[22] Brode, S., and Ahlrichs, R., 1986, Comput. Phys. Commun., 42, 41. 18, 79, 80

[23] Hockney, R. W., and Eastwood, J. W. 1981, Computer Simulation Using Particles.
McGraw-Hill International. 18, 82

[24] Vessal, B., 1994, J. Non-Cryst. Solids, 177, 103. 21, 23, 34, 124, 130

[25] Smith, W., Greaves, G. N., and Gillan, M. J., 1995, J. Chem. Phys., 103, 3091. 21,
23, 34, 124, 130

[26] Smith, W., 1993, CCP5 Information Quarterly, 39, 14. 23, 26, 29

[27] Clarke, J. H. R., Smith, W., and Woodcock, L. V., 1986, J. Chem. Phys., 84, 2290.
31, 32, 129

[28] Eastwood, J. W., Hockney, R. W., and Lawrence, D. N., 1980, Comput. Phys. Com-
mun., 19, 215. 34, 37, 38

[29] Finnis, M. W., and Sinclair, J. E., 1984, Philos. Mag. A, 50, 45. 38, 131

[30] Smith, W., and Fincham, D., 1993, Molecular Simulation, 10, 67. 46, 78, 79, 84, 100

[31] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G.,
1995, J. Chem. Phys., 103, 8577. 47

[32] Hautman, J., and Klein, M. L., 1992, Molecular Physics, 75, 379. 49, 171

[33] Neumann, M., 1985, J. Chem. Phys., 82, 5663. 52

[34] Fincham, D., and Mitchell, P. J., 1993, J. Phys. Condens. Matter, 5, 1031. 53

[35] Lindan, P. J. D., and Gillan, M. J., 1993, J. Phys. Condens. Matter, 5, 1019. 54

[36] McCammon, J. A., and Harvey, S. C. 1987, Dynamics of Proteins and Nucleic Acids.
Cambridge: University Press. 59

[37] Brown, D., and Clarke, J. H. R., 1984, Molecular Physics, 51, 1243. 63

c©CCLRC 161

[38] Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, Molecular Physics, 78, 533. 64

[39] Tildesley, D. J., Streett, W. B., and Saville, G., l978, Molec. Phys, 35, 639. 76

[40] Tildesley, D. J., and Streett, W. B. Multiple time step methods and an improved
potential function for molecular dynamics simulations of molecular liquids. In Lykos,
P., editor, Computer Modelling of Matter. ACS Symposium Series No. 86, 1978. 76

[41] Forester, T., and Smith, W., 1994, Molecular Simulation, 13, 195. 76, 77

[42] Smith, W., 1991, Comput. Phys. Commun., 62, 229. 78, 83

[43] Smith, W., 1993, Theoretica. Chim. Acta., 84, 385. 78, 80

[44] Smith, W., 1992, Comput. Phys. Commun., 67, 392. 78, 82

[45] Vessal, B., Amini, M., Leslie, M., and Catlow, C. R. A., 1990, Molecular Simulation,
5, 1. 82

[46] Melchionna, S., and Cozzini, S., 1998, University of Rome. 97

[47] Rafii-Tabar, H., and Sutton, A. P., 1991, Philos. Mag. Lett., 63, 217. 131, 132

Appendix A

The DL POLY 2 Makefile

Master makefile for DL_POLY_2.0
Author: W. Smith February 2005
#
wl
2001/08/31 11:11:20
1.15
Exp
#===
Define default settings
#===

BINROOT = ../execute
CC = gcc
EX = DLPOLY.X
EXE = $(BINROOT)/$(EX)
FC=undefined
SHELL=/bin/sh
STRESS=STRESS
TYPE=3pt

#===
Define object files

OBJ_MOD = setup_module.o angles_module.o bonds_module.o config_module.o \
core_shell_module.o dihed_module.o ewald_module.o exclude_module.o \
external_field_module.o four_body_module.o hkewald_module.o \
inversion_module.o metal_module.o pmf_module.o property_module.o \
rigid_body_module.o shake_module.o site_module.o spme_module.o \
tether_module.o three_body_module.o vdw_module.o parse_module.o \
tersoff_module.o pair_module.o

162

c©CCLRC 163

OBJ_ALL = angle_terms.o bond_terms.o core_shell_terms.o coulomb_terms.o \
define_system.o dlpoly.o error.o exclude_terms.o \
external_field_terms.o force_drivers.o four_body_terms.o \
hkewald_terms.o inversion_terms.o neu_coul_terms.o \
neu_ewald_terms.o nlist_builders.o pmf_terms.o rigid_body_terms.o \
setup_program.o shake_terms.o site_terms.o spme_terms.o \
strucopt.o system_properties.o temp_scalers.o tether_terms.o \
three_body_terms.o timchk.o traject.o utility_pack.o warning.o \
tersoff_terms.o parse_tools.o ensemble_tools.o kinetic_terms.o

OBJ_LF = lf_integrate.o lf_motion_1.o lf_rotation_1.o lf_rotation_2.o \
pmf_lf.o

OBJ_VV = vv_integrate.o vv_motion_1.o vv_rotation_1.o vv_rotation_2.o \
pmf_vv.o

OBJ_RRR = dihedral_terms.o ewald_terms.o metal_terms.o vdw_terms.o

OBJ_4PT = dihedral_terms_4pt.o ewald_terms_4pt.o metal_terms_4pt.o \
vdw_terms_4pt.o

OBJ_RSQ = dihedral_terms_rsq.o ewald_terms_rsq.o metal_terms_rsq.o \
vdw_terms_rsq.o

OBJ_PAR = basic_comms.o merge_tools.o pass_tools.o

#===
Define targets
all:
@echo "Error - please specify a target machine!"
@echo "Permissible targets for this Makefile are:"
@echo " "
@echo "hpcx (parallel)"
@echo "crayxd1 (parallel)"
@echo "macosx-xlf-g5-mpi (parallel)"
@echo "hitachi-sr2201 (parallel)"
@echo "sg8k-mpi (parallel)"
@echo " "
@echo "Please examine Makefile for details"

system specific targets follow :

#================== HPCx SP Power 5 =======================================

c©CCLRC 164

hpcx:
$(MAKE) FC="mpxlf" LD="mpxlf -o" \
LDFLAGS="-O3 -q64 -qmaxmem=-1" \
FFLAGS="-c -O3 -qmaxmem=-1 -qarch=pwr5 -qtune=pwr5 -qnosave" \
EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#================= Cray XD1 (Portland Group) =========================
crayxd1:
$(MAKE) LD="/usr/mpich/mpich-1.2.6-pgi602/bin/mpif90 -o" \
LDFLAGS="" \
FC=/usr/mpich/mpich-1.2.6-pgi602/bin/mpif90 \
FFLAGS="-c -O0 -Mdalign" \
EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#============= MacOSX-XLF-G5-MPI =====================================
macosx-xlf-g5-mpi:
$(MAKE) LD="/opt/ibmcmp/xlf/8.1/bin/xlf -o" \
LDFLAGS="-L/opt/mpich-mx/lib -lmpich -lpmpich - L/opt/mx/lib -lmyriexpress -L/usr/lib -lSystemStubs" \
FC="/opt/ibmcmp/xlf/8.1/bin/xlf" \
FFLAGS="-c -qstrict -O3 -qarch=auto -qmaxmem=32768"\
EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#============ Hitachi SR2201 ==
hitachi-sr2201:
$(MAKE) FC=xf90 \
FFLAGS="-c -W0,’form(fixed),opt(o(3)),langlvl(save(0))’ -s,TRACE" \
intlist.o
$(MAKE) LDFLAGS="" LDLIBS="-lfmpi -lmpi" LD="xf90 -o" FC=xf90 \
FFLAGS="-c -W0, ’form(fixed),opt(o(3)),langlvl(save(0))’ -s,TRACE" \
CC=xcc EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#=========== Silicon Graphics 8000 ==================================
sg8k-mpi:
$(MAKE) LD="f90 -O3 -64 -o" FC=f90 LDFLAGS="-lmpi" \
FFLAGS="-c -O3 -64" \
EX=$(EX) BINROOT=$(BINROOT) $(TYPE)

#===
Interpolation tables options

Default code. Force tables interpolation in r-space 3pt interpolation
3pt: check $(OBJ_MOD) $(OBJ_ALL) $(OBJ_RRR) $(OBJ_PAR)\
$(OBJ_LF) $(OBJ_VV)
$(LD) $(EX) $(OBJ_MOD) $(OBJ_ALL) $(OBJ_RRR) $(OBJ_PAR) \

c©CCLRC 165

$(OBJ_LF) $(OBJ_VV)
mv $(EX) $(EXE)

Force tables interpolation in r-space, 4pt interpolation
4pt: check $(OBJ_MOD) $(OBJ_ALL) $(OBJ_4PT) $(OBJ_PAR)\
$(OBJ_LF) $(OBJ_VV)
$(LD) $(EX) $(OBJ_MOD) $(OBJ_ALL) $(OBJ_4PT) $(OBJ_PAR) \
$(OBJ_LF) $(OBJ_VV)
mv $(EX) $(EXE)

Force tables interpolation in r-squared
rsq: check $(OBJ_MOD) $(OBJ_ALL) $(OBJ_RSQ) $(OBJ_PAR)\
$(OBJ_LF) $(OBJ_VV)
$(LD) $(EX) $(OBJ_MOD) $(OBJ_ALL) $(OBJ_RSQ) $(OBJ_PAR) \
$(OBJ_LF) $(OBJ_VV)
mv $(EX) $(EXE)

#===
Check that a machine has been specified
check:
@if test $(FC) = "undefined";\
then echo "You must specify a target machine!"; \
exit 99;\
fi

#===
Clean up the source directory
clean:
rm -f $(OBJ_MOD) $(OBJ_ALL) $(OBJ_RRR) $(OBJ_PAR)\
$(OBJ_LF) $(OBJ_VV) $(OBJ_RSQ) $(OBJ_4PT) *.mod

#===
Declare dependencies : c preprocess all .f files
.f.o:
$(FC) $(FFLAGS) $*.f

.c.o:
$(CC) -c $*.c

#===
Declare dependency on module files

$(OBJ_ALL): $(OBJ_MOD)
$(OBJ_LF): $(OBJ_MOD)

c©CCLRC 166

$(OBJ_VV): $(OBJ_MOD)
$(OBJ_RRR): $(OBJ_MOD)
$(OBJ_RSQ): $(OBJ_MOD)
$(OBJ_4PT): $(OBJ_MOD)

Appendix B

Periodic Boundary Conditions in
DL POLY

Introduction

DL POLY 2 is designed to accommodate a number of different periodic boundary condi-
tions, which are defined by the shape and size of the simulation cell. Briefly, these are
as follows (which also indicates the IMCON flag defining the simulation cell type in the
CONFIG File - see 4.1.2):

1. None e.g. isolated polymer in space. (IMCON=0).

2. Cubic periodic boundaries.(IMCON=1).

3. Orthorhombic periodic boundaries.(IMCON=2).

4. Parallelepiped periodic boundaries.(IMCON=3).

5. Truncated octahedral periodic boundaries. (IMCON=4).

6. Rhombic dodecahedral periodic boundaries. (IMCON=5).

7. Slab (X,Y periodic, Z nonperiodic). (IMCON=6).

8. Hexagonal prism periodic boundaries. (IMCON=7).

We shall now look at each of these in more detail. Note that in all cases the cell vectors
and the positions of the atoms in the cell are to be specified in Angstroms (Å).

No periodic boundary (IMCON=0)

Simulations requiring no periodic boundaries are best suited to in vacuuo simulations, such
as the conformational study of an isolated polymer molecule. This boundary condition is
not recommended for studies in a solvent, since evaporation is likely to be a problem.

Note this boundary condition cannot be used with the Ewald summation method.

167

c©CCLRC 168

Cubic periodic boundaries (IMCON=1)

The cubic MD cell.

The cubic MD cell is perhaps the most commonly used in simulation and has the
advantage of great simplicity. In DL POLY 2 the cell is defined with the principle axes
passing through the centres of the faces. Thus for a cube with sidelength D, the cell vectors
appearing in the CONFIG file should be: (D,0,0); (0,D,0); (0,0,D). Note the origin of the
atomic coordinates is the centre of the cell.

The cubic boundary condition can be used with the Ewald summation method.

Orthorhombic periodic boundaries (IMCON=2)

The orthorhombic cell is also a common periodic boundary, which closely resembles the
cubic cell in use. In DL POLY 2 the cell is defined with principle axes passing through the
centres of the faces. For an orthorhombic cell with sidelengths D (in X-direction), E (in
Y-direction) and F (in Z-direction), the cell vectors appearing in the CONFIG file should
be: (D,0,0); (0,E,0); (0,0,F). Note the origin of the atomic coordinates is the centre of the
cell.

The orthorhombic boundary condition can be used with the Ewald summation method.

c©CCLRC 169

The orthorhomic MD cell.

Parallelepiped periodic boundaries (IMCON=3)

The parallelepiped MD cell.

The parallelepiped (e.g. monoclinic or triclinic) cell is generally used in simulations of
crystalline materials, where its shape and dimension is commensurate with the unit cell of
the crystal. Thus for a unit cell specified by three principal vectors a, b, c, the MD cell
is defined in the DL POLY 2 CONFIG file by the vectors (La1,La2,La3), (Mb1,Mb2,Mb3),
(Nc1,Mc2,Nc3), in which L,M,N are integers, reflecting the multiplication of the unit cell
in each principal direction. Note that the atomic coordinate origin is the centre of the MD
cell.

The parallelepiped boundary condition can be used with the Ewald summation method.

Truncated octahedral boundaries (IMCON=4)

c©CCLRC 170

The truncated octahedral MD cell.

This is one of the more unusual MD cells available in DL POLY, but it has the advantage
of being more nearly spherical than most other MD cells. This means it can accommodate
a larger spherical cutoff for a given number of atoms, which leads to greater efficiency. This
can be very useful when simulating (for example) a large molecule in solution, where fewer
solvent molecules are required for a given simulation cell width.

The principal axes of the truncated octahedron (see figure) pass through the centres
of the square faces, and the width of the cell, measured from square face to square face
along a principal axis defines the width D of the cell. From this, the cell vectors required
in the DL POLY 2 CONFIG file are simply: (D,0,0), (0,D,0), (0,0,D). These are also the
cell vectors defining the enscribing cube, which posseses twice the volume of the truncated
octahedral cell. Once again, the atomic positions are defined with respect to the cell centre.

The truncated octahedron can be used with the Ewald summation method.

Rhombic dodecahedral boundaries (IMCON=5)

This is another unusual MD cell (see figure), but which possesses similar advantages to the
truncated octahedron, but with a slightly greater efficiency in its use of the cell volume (the
ratio is about 74% to 68%).

The principal axis in the X-direction of the rhombic dodecahedron passes through the
centre of the cell and the centre of a rhombic face. The Y-axis does likewise, but is set at 90
degrees to the X-axis. The Z-axis completes the orthonormal set and passes through a vertex
where four faces meet. If the width D of the cell is defined as the perpendicular distance
between two opposite faces, the cell vectors required for the DL POLY 2 CONFIG file are:
(D,0,0), (0,D,0), (0,0,

√
2D).These also define the enscribing orthorhombic cell, which has

twice the MD cell volume. In DL POLY 2 the centre of the cell is also the origin of the
atomic coordinates.

The rhombic dodecahedron can be used with the Ewald summation method.

c©CCLRC 171

The rhombic dodecahedral MD cell.

Slab boundary conditions (IMCON=6)

Slab boundaries are periodic in the X- and Y-directions, but not in the Z-direction. They
are particularly useful for simulating surfaces. The periodic cell in the XY plane can be any
parallelogram. The origin of the X,Y atomic coordinates lies on an axis perpendicular to
the centre of the parallelogram. The origin of the Z coordinate is where the user specifies
it, but at or near the surface is recommended.

If the XY parallelogram is defined by vectors A and B, the vectors required in the
CONFIG file are: (A1,A2,0), (B1,B2,0), (0,0,D), where D is any real number (including
zero). If D is nonzero, it will be used by DL POLY to help determine a ‘working volume’
for the system. This is needed to help calculate RDFs etc. (The working value of D is in
fact taken as one of: 3×cutoff; or 2×max abs(Z coordinate)+cutoff; or the user specified
D, whichever is the larger.)

Note that the standard Ewald sum cannot be used with this boundary condition.
DL POLY 2 switches automatically to the Hautman-Klein-Ewald method instead [32].

The surface in a system with charges can also be modelled with DL POLY 2 if period-
icity is allowed in the Z-direction. In this case slabs of ions well-separated by vacuum zones
in the Z-direction can be handled with IMCON=2 or 3.

Hexagonal prism boundaries (IMCON=7)

In this case the Z-axis lies along a line joining the centres of the hexagonal faces. The Y-
axis is perpendicular to this and passes through the centre of one of the faces. The X-axis
completes the orthonormal set and passes through the centre of an edge that is parallel to
the Z-axis. (Note: It is important to get this convention right!) The origin of the atomic
coordinates is the centre of the cell. If the length of one of the hexagon edges is D, the
cell vectors required in the CONFIG file are: (3D,0,0), (0,

√
3D,0), (0,0,H), where H is the

prism height (the distance between hexagonal faces). The orthorhombic cell also defined by
these vectors enscribes the hexagonal prism and possesses twice the volume, but the height
and the centre are the same.

The Ewald summation method may be used with this periodic boundary condition.

c©CCLRC 172

The hexagonal MD cell.

This MD cell is particularly suitable for simulating strands or fibres (i.e. systems with
a pronounced anisotropy in the Z-direction), such as DNA strands in solution, or stretched
polymer chains.

Appendix C

DL POLY Error Messages and
User Action

Introduction

In this appendix we document the error messages encoded in DL POLY 2 and the recom-
mended user action. The correct response is described as the standard user response
in the approriate sections below, to which the user should refer before acting on the error
encountered.

The reader should also be aware that some of the error messages listed below may be
either disabled in, or absent from, the installed version of DL POLY 2 . Disabled messages
generally apply to older releases of the code, while absent messages apply to newer versions
of the code and will not usually apply to previous releases. They are all included for
completeness. Note that the wording of some of the messages may also have changed over
time, usually to provide more specific information. The most recent wording appears below.

DL POLY 2 incorporates FORTRAN 90 dynamic array allocation to set the array sizes
at run time. It is not foolproof however. Sometimes an estimate of the required array sizes
is difficult to obtain and the calculated value may be too small. For this reason DL POLY 2
retains a number of array dimension checks and will terminate when an array bound error
occurs.

When a dimension error occurs, the standard user response is to edit the DL POLY 2
subroutine parset.f. Locate where the variable defining the array dimension is fixed and
increase accordingly. To do this you should make use of the dimension information that
DL POLY 2 prints in the OUTPUT file prior to termination. If no information is supplied,
simply doubling the size of the variable will usually do the trick. If the variable concerned
is defined in one of the support subroutines cfgscan.f, fldscan.f, conscan.f you will
need to insert a new line in parset.f to redefine it - after the relevant subroutine has been
called! Finally the code must be recompiled, but in this case it will be necessary only to
recompile parset.f and not the whole code.

173

c©CCLRC 174

The DL POLY 2 Error Messages

Message 1: error - PVM NODES unset

The code was C-preprocessed with the flag -DPVM set but the number of PVM nodes was
not stated.

Action:
Delete the module initcomms.o from the srcf90 directory and re-make the executable,this
time including the directive PVM NODES=n (where n is the number of nodes you require)
with the make command.

Message 2: error - machine not a hypercube

The number of nodes on the parallel machine is not a power of 2.

Action:
Specify an appropriate number of processors for job execution. If you are using PVM see
Action: for error message 1.

Message 3: error - unknown directive found in CONTROL file

This error most likely arises when a directive is misspelt.

Action:
Locate incorrect directive in CONTROL file and replace.

Message 4: error - unknown directive found in FIELD file

This error most likely arises when a directive is misspelt or is encountered in an incorrect lo-
cation in the FIELD file, which can happen if too few or too many data records are included.

Action:
Locate the erroneous directive in the FIELD file and correct error.

Message 5: error - unknown energy unit requested

The DL POLY 2 FIELD file permits a choice of units for input of energy parameters. These
may be: electron volts (ev); kilocalories (kcal); kilojoules (kj); or the DL POLY 2 internal
units (10 J mol−1) (internal). There is no default value. Failure to specify any of these
correctly, or reference to other energy units, will result in this error message. See documen-
tation of the FIELD file.

Action:
Correct energy keyword on units directive in FIELD file and resubmit.

c©CCLRC 175

Message 6: error - energy unit not specified

A units directive is mandatory in the FIELD file. This error indicates that DL POLY 2
has failed to find the required record.

Action:
Add units directive to FIELD file and resubmit.

Message 7: error - energy unit respecified

DL POLY 2 expects only one units directive in the FIELD file. This error results if it
encounters another - implying an ambiguity in units.

Action:
Locate extra units directive in FIELD file and remove.

Message 8: error - time step not specified

DL POLY 2 requires a timestep directive in the CONTROL file. This error results if none
is encountered.

Action:
Inserttimestep directive in CONTROL file with an appropriate numerical value.

Message 10: error - too many molecule types specified

DL POLY 2 has a set limit on the number of kinds of molecules it will handle in any sim-
ulation (this is not the same as the number of molecules). If this permitted maximum is
exceeded, the program terminates. The error arises when the molecules directive in the
FIELD file specifes too large a number.

Action:
Standard user response. Fix parameter mxtmls.

Message 11: error - duplicate molecule directive in FIELD file

The number of different types of molecules in a simulation should only be specified once.
If DL POLY 2 encounters more than one molecules directive, it will terminate execution.

Action:
Locate the extra molecule directive in the FIELD file and remove.

Message 12: error - unknown molecule directive in FIELD file

Once DL POLY 2 encounters the molecules directive in the FIELD file, it assumes the
following records will supply data describing the intramolecular force field. It does not then

c©CCLRC 176

expect to encounter directives not related to these data. This error message results if it
encounters a unrelated directive. The most probable cause is incomplete specification of
the data (e.g. when the finish directive has been omitted.)

Action:
Check the molecular data entries in the FIELD file and correct.

Message 13: error - molecule species not specified

This error arises when DL POLY 2 encounters non-bonded force data in the FIELD file,
before the molecular species have been specified. Under these circumstances it cannot as-
sign the data correctly, and therefore terminates.

Action:
Make sure the molecular data appears before the non-bonded forces data in the FIELD file
and resubmit.

Message 14: error - too many unique atom types specified

This error arises when DL POLY 2 scans the FIELD file and discovers that there are too
many different types of atoms in the system (i.e. the number of unique atom types exceeds
the mxsvdw parameter.

Action:
Standard user response. Fix parameter mxsvdw.

Message 15: error - duplicate pair potential specified

In processing the FIELD file, DL POLY 2 keeps a record of the specified short range pair
potentials as they are read in. If it detects that a given pair potential has been specified
before, no attempt at a resolution of the ambiguity is made and this error message results.
See specification of FIELD file.

Action:
Locate the duplication in the FIELD file and rectify.

Message 16: error - strange exit from FIELD file processing

This should never happen! However one remote possibility is that there are more than
10,000 directives in the FIELD file! It simply means that DL POLY 2 has ceased pro-
cessing the FIELD data, but has not reached the end of the file or encountered a close
directive. Probable cause: corruption of the DL POLY 2 executable or of the FIELD file.
We would be interested to hear of other reasons!

c©CCLRC 177

Action:
Recompile the program or recreate the FIELD file. If neither of these works, send the
problem to us.

Message 17: error - strange exit from CONTROL file processing

See notes on message 16 above.

Message 18: error - duplicate 3-body potential specified

DL POLY 2 has encountered a repeat specification of a 3-body potential in the FIELD file.

Action:
Locate the duplicate entry, remove and resubmit job.

Message 19: error - duplicate 4-body potential specified

A 4-body potential has been duplicated in the FIELD file.

Action:
Locate the duplicated 4-body potential and remove. Resubmit job.

Message 20: error - too many molecule sites specified

DL POLY 2 has a fixed limit on the number of unique molecular sites in any given simu-
lation. If this limit is exceeded, the program terminates.

Action:
Standard user response. Fix parameter mxsite.

Message 21: error - duplicate tersoff potential specified

The user has defined more than one Tersoff potential for a given pair of atoms types.
Action:
Locate the duplication in the FIELD file and correct.

Message 22: error - unsuitable radial increment in TABLE file

This arises when the tabulated potentials presented in the TABLE file have an increment
that is greater than that used to define the other potentials in the simulation. Ideally the
increment should be r cut/(mxgrid − 4), where r cut is the potential cutoff for the short
range potentials and mxgrid is the parameter defining the length of the interpolation ar-
rays. An increment less than this is permissible however.

Action:
The tables must be recalculated with an appropriate increment.

c©CCLRC 178

Message 23: error - incompatible FIELD and TABLE file potentials

This error arises when the specification of the short range potentials is different in the
FIELD and TABLE files. This usually means that the order of specification of the poten-
tials is different. When DL POLY 2 finds a change in the order of specification, it assumes
that the user has forgotten to enter one.

Action:
Check the FIELD and TABLE files. Make sure that you correctly specify the pair potentials
in the FIELD file, indicating which ones are to be presented in the TABLE file. Then check
the TABLE file to make sure all the tabulated potentials are present in the order the FIELD
file indicates.

Message 24: error - end of file encountered in TABLE file

This means the TABLE file is incomplete in some way: either by having too few potentials
included, or the number of data points is incorrect.

Action:
Examine the TABLE file contents and regenerate it if it appears to be incomplete. If it look
intact, check that the number of data points specified is what DL POLY 2 is expecting.

Message 25: error - wrong atom type found in CONFIG file

On reading the input file CONFIG, DL POLY 2 performs a check to ensure that the atoms
specified in the configuration provided are compatible with the corresponding FIELD file.
This message results if they are not.

Action:
The possibility exists that one or both of the CONFIG or FIELD files has incorrectly
specified the atoms in the system. The user must locate the ambiguity, using the data
printed in the OUTPUT file as a guide, and make the appropriate alteration.

Message 30: error - too many chemical bonds specified

DL POLY 2 sets a limit on the number of chemical bond potentials that can be specified
in the FIELD file. Termination results if this number is exceeded. See FIELD file docu-
mentation. Do not confuse this error with that described by message 31 (below).

Action:
Standard user response. Fix parameter mxtbnd.

Message 31: error - too many chemical bonds in system

DL POLY 2 sets a limit on the number of chemical bond potentials in the simulated system
as a whole. (This number is a combination of the number of molecules and the number

c©CCLRC 179

of bonds per molecule, divided by the number of processing nodes.) Termination results
if this number is exceeded. Do not confuse this error with that described by message 30
(above).

Action:
Standard user response. Fix the parameter mxbond.

Message 32: error - integer array memory allocation failure

DL POLY 2 has failed to allocate sufficient memory to accommodate one or more of the
integer arrays in the code.

Action:
This may simply mean that your simulation is too large for the machine you are running
on. Consider this before wasting time trying a fix. Try using more processing nodes if they
are available. If this is not an option investigate the possibility of increasing the heap size
for your application. Talk to your systems support people for advice on how to do this.

Message 33: error - real array memory allocation failure

DL POLY 2 has failed to allocate sufficient memory to accommodate one or more of the
real arrays in the code.

Action:
This may simply mean that your simulation is too large for the machine you are running
on. Consider this before wasting time trying a fix. Try using more processing nodes if they
are available. If this is not an option investigate the possibility of increasing the heap size
for your application. Talk to your systems support people for advice on how to do this.

Message 34: error - character array memory allocation failure

DL POLY 2 has failed to allocate sufficient memory to accommodate one or more of the
character arrays in the code.

Action:
This may simply mean that your simulation is too large for the machine you are running
on. Consider this before wasting time trying a fix. Try using more processing nodes if they
are available. If this is not an option investigate the possibility of increasing the heap size
for your application. Talk to your systems support people for advice on how to do this.

Message 35: error - logical array memory allocation failure

DL POLY 2 has failed to allocate sufficient memory to accommodate one or more of the
logical arrays in the code.

c©CCLRC 180

Action:
This may simply mean that your simulation is too large for the machine you are running
on. Consider this before wasting time trying a fix. Try using more processing nodes if they
are available. If this is not an option investigate the possibility of increasing the heap size
for your application. Talk to your systems support people for advice on how to do this.

Message 40: error - too many bond constraints specified

DL POLY 2 sets a limit on the number of bond constraints that can be specified in the
FIELD file. Termination results if this number is exceeded. See FIELD file documentation.
Do not confuse this error with that described by message 41 (below).

Action:
Standard user response. Fix the parameter mxtcon.

Message 41: error - too many bond constraints in system

DL POLY 2 sets a limit on the number of bond constraints in the simulated system as a
whole. (This number is a combination of the number of molecules and the number of per
molecule, divided by the number of processing nodes.) Termination results if this number
is exceeded. Do not confuse this error with that described by message 40 (above).

Action:
Standard user response. Fix the parameter mxcons.

Message 42: error - transfer buffer too small in merge1

The buffer used to transfer data between nodes in the merge1 subroutines has been di-
mensioned too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 45: error - too many atoms in CONFIG file

DL POLY 2 limits the number of atoms in the system to be simulated and checks for the
violation of this condition when it reads the CONFIG file. Termination will result if the
condition is violated.
Action:
Standard user response. Fix the parameter mxatms. Consider the possibility that the wrong
CONFIG file is being used (e.g similar system, but larger size.)

Message 46: ewlbuf array too small in ewald1

The ewlbuf array used to store structure factor data in subroutine ewald1 has been di-
mensioned too small.

c©CCLRC 181

Action:
Standard user response. Fix the parameter mxebuf.

Message 47: error - transfer buffer too small in merge

The buffer used to transfer data between nodes in the merge subroutines has been dimen-
sioned too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 48: error - transfer buffer too small in fortab

The buffer used to transfer data between nodes in the fortab subroutines has been dimen-
sioned too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 49: error - frozen core-shell unit specified

The DL POLY 2 option to freeze the location of an atom (i.e. hold it permanently in one
position) is not permitted for core-shell units. This includes freezing the core or the shell
independently.

Action:
Remove the frozen atom option from the FIELD file. Consider using a non-polarisable
atom instead.

Message 50: error - too many bond angles specified

DL POLY 2 limits the number of valence angle potentials that can be specified in the
FIELD file and checks for the violation of this. Termination will result if the condition is
violated. Do not confuse this error with that described by message 51 (below).

Action:
Standard user response. Fix the parameter mxtang.

Message 51: error - too many bond angles in system

DL POLY 2 limits the number of valence angle potentials in the system to be simulated
(actually, the number to be processed by each node) and checks for the violation of this.
Termination will result if the condition is violated. Do not confuse this error with that

c©CCLRC 182

described by message 50 (above).

Action:
Standard user response. Fix the parameter mxangl. Consider the possibility that the wrong
CONFIG file is being used (e.g similar system, but larger size.)

Message 52: error - end of FIELD file encountered

This message results when DL POLY 2 reaches the end of the FIELD file, without having
read all the data it expects. Probable causes: missing data or incorrect specification of
integers on the various directives.

Action:
Check FIELD file for missing or incorrect data and correct.

Message 53: error - end of CONTROL file encountered

This message results when DL POLY 2 reaches the end of the CONTROL file, without
having read all the data it expects. Probable cause: missing finish directive.

Action:
Check CONTROL file and correct.

Message 54: error - problem reading CONFIG file

This message results when DL POLY 2 encounters a problem reading the CONFIG file.
Possible cause: corrupt data.

Action:
Check CONFIG file and correct.

Message 55: error - end of CONFIG file encountered

This error arises when DL POLY 2 attempts to read more data from the CONFIG file than
is actually present. The probable cause is an incorrect or absent CONFIG file, but it may
be due to the FIELD file being incompatible in some way with the CONFIG file.

Action:
Check contents of CONFIG file. If you are convinced it is correct, check the FIELD file for
inconsistencies.

Message 57: error - too many core-shell units specified

DL POLY 2 has a restriction of the number of types of core-shell unit in the FIELD file
and will terminate if too many are present. Do not confuse this error with that described

c©CCLRC 183

by message 59 (below).

Action:
Standard user response. Fix the parameter mxtshl.

Message 59: error - too many core-shell units in system

DL POLY 2 limits the number of core-shell units in the simulated system. Termination
results if too many are encountered. Do not confuse this error with that described by mes-
sage 57 (above).

Action:
Standard user response. Fix the parameter mxshl.

Message 60: error - too many dihedral angles specified

DL POLY 2 will accept only a limited number of dihedral angles in the FIELD file and
will terminate if too many are present. Do not confuse this error with that described by
message 61 (below).

Action:
Standard user response. Fix the parameter mxtdih.

Message 61: error - too many dihedral angles in system

The number of dihedral angles in the whole simulated system is limited by DL POLY 2
. Termination results if too many are encountered. Do not confuse this error with that
described by message 60 (above).

Action:
Standard user response. Fix the parameter mxdihd.

Message 62: error - too many tethered atoms specified

DL POLY 2 will accept only a limited number of tethered atoms in the FIELD file and
will terminate if too many are present. Do not confuse this error with that described by
message 63 (below).

Action:
Standard user response. Fix the parameter mxteth.

Message 63: error - too many tethered atoms in system

The number of tethered atoms in the simulated system is limited by DL POLY 2 . Termi-
nation results if too many are encountered. Do not confuse this error with that described

c©CCLRC 184

by message 62 (above).

Action:
Standard user response. Fix the parameter msteth.

Message 65: error - too many excluded pairs specified

This error can arise when DL POLY 2 is identifying the atom pairs that cannot have a pair
potential between them, by virtue of being chemically bonded for example (see subroutine
exclude). Some of the working arrays used in this operation may be exceeded, resulting
in termination of the program.

Action:
Standard user response. Fix the parameter mxexcl.

Message 66: error - incorrect boundary condition for HK ewald

The Hautman-Klein Ewald method can only be used with XY planar periodic boundary
conditions (i.e. imcon = 6).

Action:
Either the periodic boundary condition, or the choice of calculation of the electrostatic
forces must be changed.

Message 67: error - incorrect boundary condition in thbfrc

Three body forces in DL POLY 2 are only permissible with cubic , orthorhombic and par-
allelepiped periodic boundaries. Use of other boundary conditions results in this error.

Action:
If nonperiodic boundaries are required, the only option is to use a very large simulation cell,
with the required system at the centre surrounded by a vacuum. This is not very efficient
however and use of a realistic periodic system is the best option.

Message 69: error - too many link cells required in thbfrc

The calculation of three body forces in DL POLY 2 is handled by the link cell algorithm.
This error arises if the required number of link cells exceeds the permitted array dimension
in the code.

Action:
Standard user response. Fix the parameter mxcell.

c©CCLRC 185

Message 70: error - constraint bond quench failure

When a simulation with bond constraints is started, DL POLY 2 attempts to extract the
kinetic energy of the constrained atom-atom bonds arising from the assignment of initial
random velocities. If this procedure fails, the program will terminate. The likely cause is a
badly generated initial configuration.

Action:
Some help may be gained from increasing the cycle limit, by following the standard user
response to increase the control parameter mxshak. You may also consider reducing the
tolerance of the SHAKE iteration, the directive shake in the CONTROL file. However it
is probably better to take a good look at the starting conditions!

Message 71: error - too many metal potentials specified

The number of metal potentials that can be specfied in the FIELD file is limited. This
error results if too many are used.

Action:
Standard user response. Fix the parameter mxvdw. Note that this parameter must be double
the number of required metal potentials. Recompile the program.

Message 73: error - too many inversion potentials specified

The number of inversion potentials specified in the FIELD file exceeds the permitted max-
imum.

Action:
Standard user response. Fix the parameter mxtinv.

Message 75: error - too many atoms in specified system

DL POLY 2 places a limit on the number of atoms that can be simulated. Termination
results if too many are specified.

Action:
Standard user response. Fix the parameter mxatms.

Message 77: error - too many inversion potentials in system

The simulation contains too many inversion potentials overall, causing termination of run.

Action:
Standard user response. Fix the parameter mxinv.

c©CCLRC 186

Message 79: error - incorrect boundary condition in fbpfrc

The 4-body force routine assumes a cubic or parallelepiped periodic boundary condition is
in operation. The job will terminate if this is not adhered to.

Action:
You must reconfigure your simulation to an appropriate boundary condition.

Message 80: error - too many pair potentials specified

DL POLY 2 places a limit on the number of pair potentials that can be specified in the
FIELD file. Exceeding this number results in termination of the program execution.

Action:
Standard user response. Fix the parameters mxsvdw. and mxvdw.

Message 81: error - unidentified atom in pair potential list

DL POLY 2 checks all the pair potentials specified in the FIELD file and terminates the
program if it can’t identify any one of them from the atom types specified earlier in the file.

Action:
Correct the erroneous entry in the FIELD file and resubmit.

Message 82: error - calculated pair potential index too large

In checking the pair potentials specified in the FIELD file DL POLY 2 calculates a unique
integer index that henceforth identifies the potential within the program. If this index
becomes too large, termination of the program results.

Action:
Standard user response. Fix the parameters mxsvdw and mxvdw.

Message 83: error - too many three body potentials specified

DL POLY 2 has a limit on the number of three body potentials that can be defined in the
FIELD file. This error results if too many are included.

Action:
Standard user response. Fix the parameter mxtbp.

Message 84: error - unidentified atom in 3-body potential list

DL POLY 2 checks all the 3-body potentials specified in the FIELD file and terminates the
program if it can’t identify any one of them from the atom types specified earlier in the file.

c©CCLRC 187

Action:
Correct the erroneous entry in the FIELD file and resubmit.

Message 85: error - required velocities not in CONFIG file

If the user attempts to start up a DL POLY 2 simulation with the restart or restart scale
directives (see description of CONTROL file,) the program will expect the CONFIG file
to contain atomic velocities as well as positions. Termination results if these are not present.

Action:
Either replace the CONFIG file with one containing the velocities, or if not available, remove
the restart directive altogether and let DL POLY 2 create the velocities for itself.

Message 86: error - calculated 3-body potential index too large

DL POLY 2 has a permitted maximum for the calculated index for any three body poten-
tial in the system (i.e. as defined in the FIELD file). If there are m distinct types of atom
in the system, the index can possibly range from 1 to (m2 ∗ (m − 1))/2. If the internally
calculated index exceeds this number, this error report results.

Action:
Standard user response. Fix the parameter mxtbp.

Message 87: error - too many link cells required in fbpfrc

The fbpfrc subroutine uses link cells to compute the four body forces. This message in-
dicates that the link cell arrays have insufficient size to work properly.

Action:
Standard user response. Fix the parameter mxcell.

Message 88: error - too many tersoff potentials specified

Too many Tersoff potentials have been defined in the FIELD file. Certain arrays must be
increased in size to accommodate the data.

Action:
Standard user response. Fix the parameter mxter.

Message 89: error - too many four body potentials specified

Too many four body potential have been defined in the FIELD file. Certain arrays must
be increased in size to accommodate the data.

Action:
Standard user response. Fix the parameter mxfbp.

c©CCLRC 188

Message 90: error - system total electric charge nonzero

In DL POLY 2 a check on the total system charge will result in an error if the net charge of
the system is nonzero. (Note: In DL POLY 2 this message has been disabled. The program
merely prints a warning stating that the system is not electrically neutral but it does not
terminate the program - watch out for this.)

Action:
Check the specified atomic charges and their populations. Make sure they add up to zero.
If the system is required to have a net zero charge, you can enable the call to this error
message in subroutine sysdef.

Message 92: error - unidentified atom in tersoff potential list

The specification of a Tersoff potential in the FIELD file has referenced an atom type that
is unknown.

Action:
Locate the erroneous atom type in the Tersoff potential definition in the FIELD file and
correct. Make sure this atom type is specified by an atoms directive earlier in the file.

Message 91: error - unidentified atom in 4-body potential list

The specification of a four-body potential in the FIELD file has referenced an atom type
that is unknown.

Action:
Locate the erroneous atom type in the four body potential definition in the FIELD file and
correct. Make sure this atom type is specified by an atoms directive earlier in the file.

Message 93: error - cannot use shell model with rigid molecules

The dynamical shell model implemented in DL POLY 2 is not designed to work with rigid
molecules. This error results if these two options are simultaneously selected.

Action:
In some circumstances you may consider overriding this error message and continuing with
your simulation. For example if your simulation does not require the polarisability to be a
feature of the rigid species, but is confined to free atoms or flexible molecules in the same
system. The appropriate error trap is found in subroutine sysdef.

Message 95: error - potential cutoff exceeds half cell width

In order for the minimum image convention to work correctly within DL POLY 2 , it is
necessary to ensure that the cutoff applied to the pair potentials does not exceed half

c©CCLRC 189

the perpendicular width of the simulation cell. (The perpendicular width is the shortest
distance between opposing cell faces.) Termination results if this is detected. In NVE
simulations this can only happen at the start of a simulation, but in NPT, it may occur at
any time.

Action:
Supply a cutoff that is less than half the cell width. If running constant pressure calcula-
tions, use a cutoff that will accommodate the fluctuations in the simulation cell. Study the
fluctuations in the OUTPUT file to help you with this.

Message 97: error - cannot use shell model with neutral groups

The dynamical shell model was not designed to work with neutral groups. This error results
if an attempt is made to combine both.

Action:
There is no general remedy for this error if you wish to combine both these capabilities.
However if your simulation does not require the polarisability to be a feature of rigid species
(comprising the charged groups), but is confined to free atoms or flexible molecules in the
same system, you may consider overriding this error message and continuing with your
simulation. The appropriate error trap is found in subroutine sysdef.

Message 99: error - cannot use shell model with constraints

The dynamical shell model was not designed to work in conjunction with constraint bonds.
This error results if both are used in the same simulation.

Action: There is no general remedy if you wish to combine both these capabilities. However
if your simulation does not require the polarisability to be a feature of the constrained
species, but is confined to free atoms or flexible molecules, you may consider overriding
this error message and continuing with your simulation. The appropriate error trap is in
subroutine sysdef.

Message 100: error - forces working arrays too small

There are a number of arrays in DL POLY 2 that function as workspace for the forces cal-
culations. Their dimension is equal to the number of atoms in the simulation cell divided by
the number of nodes. If these arrays are likely to be exceeded, DL POLY 2 will terminate
execution.

Action:
Standard user response. Fix the parameter msatms.

c©CCLRC 190

Message 101: error - calculated 4-body potential index too large

DL POLY 2 has a permitted maximum for the calculated index for any four body potential
in the system (i.e. as defined in the FIELD file). If there are m distinct types of atom
in the system, the index can possibly range from 1 to (m2 ∗ (m + 1) ∗ (m + 2))/6. If the
internally calculated index exceeds this number, this error report results.

Action:
Standard user response. Fix the parameter mxfbp.

Message 102: error - parameter mxproc exceeded in shake arrays

The RD-SHAKE algorithm distributes data over all nodes of a parallel computer. Certain
arrays in RD-SHAKE have a minimum dimension equal to the maximum number of nodes
DL POLY 2 is likely to encounter. If the actual number of nodes exceeds this, the program
terminates.

Action:
Standard user response. Fix the parameter mxproc.

Message 103: error - parameter mxlshp exceeded in shake arrays

The RD-SHAKE algorithm requires that information about ‘shared’ atoms be passed be-
tween nodes. If there are too many atoms, the arrays holding the information will be
exceeded and DL POLY 2 will terminate execution.

Action:
Standard user response. Fix the parameter mxlshp.

Message 105: error - shake algorithm failed to converge

The RD-SHAKE algorithm for bond constraints is iterative. If the maximum number of
permitted iterations is exceeded, the program terminates. Possible causes include: a bad
starting configuration; too large a time step used; incorrect force field specification; too
high a temperature; inconsistent constraints involving shared atoms etc.

Action:
Corrective action depends on the cause. It is unlikely that simply increasing the iteration
number will cure the problem, but you can try: follow the standard user response to increase
the control parameter mxshak. But the trouble is much more likely to be cured by careful
consideration of the physical system being simulated. For example, is the system stressed
in some way? Too far from equilibrium?

c©CCLRC 191

Message 106: error - neighbour list array too small in parlink

Construction of the Verlet neighbour list in subroutine parlink nonbonded (pair) force has
exceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 107: error - neighbour list array too small in parlinkneu

Construction of the Verlet neighbour list in subroutine parlinkneu nonbonded (pair) force
has exceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 108: error - neighbour list array too small in parneulst

Construction of the Verlet neighbour list in subroutine parneulst nonbonded (pair) force
has exceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 109: error - neighbour list array too small in parlst nsq

Construction of the Verlet neighbour list in subroutine parlst nsq nonbonded (pair) force
has exceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 110: error - neighbour list array too small in parlst

Construction of the Verlet neighbour list in subroutine parlst nonbonded (pair) force has
exceeded the neighbour list array dimensions.

Action:
Standard user response. Fix the parameter mxlist.

Message 112: error - vertest array too small

This error results when the dimension of the DL POLY 2 vertest arrays, which are used
in checking if the Verlet list needs updating, have been exceeded.

c©CCLRC 192

Action:
Standard user response. Fix the parameter mslst.

Message 120: error - invalid determinant in matrix inversion

DL POLY 2 occasionally needs to calculate matrix inverses (usually the inverse of the ma-
trix of cell vectors, which is of size 3 × 3). For safety’s sake a check on the determinant is
made, to prevent inadvertent use of a singular matrix.

Action:
Locate the incorrect matrix and fix it - e.g. are cell vectors correct?

Message 130: error - incorrect octahedral boundary condition

When calculating minimum images DL POLY 2 checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program termi-
nation results if an inconsistency is found. In this case the error refers to the truncated
octahedral minimum image, which is inconsistent with the simulation cell. The most prob-
able cause is the incorrect definition of the simulation cell vectors present in the input file
CONFIG, these must equal the vectors of the enscribing cubic cell.

Action:
Check the specified simulation cell vectors and correct accordingly.

Message 135: error - incorrect hexagonal prism boundary condition

When calculating minimum images DL POLY 2 checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program termi-
nation results if an inconsistency is found. In this case the error refers to the hexagonal
prism minimum image, which is inconsistent with the simulation cell. The most probable
cause is the incorrect definition of the simulation cell vectors present in the input file CON-
FIG, these must equal the vectors of the enscribing orthorhombic cell.

Action:
Check the specified simulation cell vectors and correct accordingly.

Message 140: error - incorrect dodecahedral boundary condition

When calculating minimum images DL POLY 2 checks that the periodic boundary of the
simulation cell is compatible with the specifed minimum image algorithm. Program ter-
mination results if an inconsistency is found. In this case the error refers to the rhombic
dodecahedral minimum image, which is inconsistent with the simulation cell. The most
probable cause is the incorrect definition of the simulation cell vectors present in the input
file CONFIG, these must equal the vectors of the enscribing tetragonal simulation cell.

c©CCLRC 193

Action:
Check the specified simulation cell vectors and correct accordingly.

Message 141: error - duplicate metal potential specified

The user has specified a particular metal potential more than once in the FIELD file.

Action:
Locate the metal potential specification in the FIELD file and remove or correct the po-
tential concerned.

Message 145: error - no van der waals potentials defined

This error arises when there are no VDW potentials specified in the FIELD file but the
user has not specified no vdw in the CONTROL file. In other words DL POLY 2 expects
the FIELD file to contain VDW potential specifications.

Action:
Edit the FIELD file to insert the required potentials or specify no vdw in the CONTROL
file.

Message 150: error - unknown van der waals potential selected

DL POLY 2 checks when constructing the interpolation tables for the short ranged poten-
tials that the potential function requested is one which is of a form known to the program.
If the requested potential form is unknown, termination of the program results. The most
probable cause of this is the incorrect choice of the potential keyword in the FIELD file or
one in the wrong columns (input is formatted).

Action:
Read the DL POLY 2 documentation and find the potential keyword for the potential
desired. Insert the correct index in the FIELD file definition and ensure it occurs in the
correct columns (17-20). If the correct form is not available, look at the subroutine forgen
(or its variant) and define the potential for yourself. It is easily done.

Message 151: error - unknown metal potential selected

The metal potentials available in DL POLY 2 are confined to density dependent forms of
the Sutton-Chen type. This error results if the user attempts to specify another.

Action:
Re-specify the potential as Sutton-Chen type if possible. Check the potential keyword
appears in columns 17-20 of the FIELD file.

c©CCLRC 194

Message 153: error - metals not permitted with multiple timestep

The multiple timestep algorithm cannot be used in conjunction with metal potentials in
DL POLY 2 .

Action:
The simulation must be run without the multiple timestep option.

Message 160: error - unaccounted for atoms in exclude list

This error message means that DL POLY 2 has been unable to find all the atoms described
in the exclusion list within the simulation cell. This should never occur, if it does it means
a serious bookkeeping error has occured. The probable cause is corruption of the code
somehow.

Action:
If you feel you can tackle it - good luck! Otherwise we recommend you get in touch with
the program authors. Keep all relevant data files to help them find the problem.

Message 170: error - too many variables for statistic array

This error means the statistics arrays appearing in subroutine static are too small. This
can happen if the number of unique atom types is too large.

Action:
Standard user response. Fix the parameter mxnstk. mxnstk should be at least (45+number
of unique atom types).

Message 180: error - Ewald sum requested in non-periodic system

DL POLY 2 can use either the Ewald method or direct summation to calculate the elec-
trostatic potentials and forces in periodic (or pseudo-periodic) systems. For non-periodic
systems only direct summation is possible. If the Ewald summation is requested (with
the ewald sum or ewald precision directives in the CONTROL file) without periodic
boundary conditions, termination of the program results.

Action:
Select periodic boundaries by setting the variable imcon>0 in the CONFIG file (if possible)
or use a different method to evaluate electrostatic interactions e.g. by usinf the coul
directive in the CONTROL file.

Message 185: error - too many reciprocal space vectors

DL POLY 2 places hard limit on the number of k vectors to be used in the Ewald sum and
terminates if more than this is requested.

c©CCLRC 195

Action:
Either consider using fewer k vectors in the Ewald sum (and a larger cutoff in real space)
or follow standard user response to reset the parameters kmaxb, kmaxc.

Message 186: error - transfer buffer array too small in sysgen

In the subroutine sysgen.f DL POLY 2 requires dimension of the array buffer (defined
by the parameter mxbuff) to be no less than the parameter mxatms or the product of pa-
rameters mxnstk*mxstak. If this is not the case it will be unable to restart the program
correctly to continue a run. (Applies to parallel implementations only.)

Action:
Standard user response. Fix the parameter mxbuff.

Message 190: error - buffer array too small in splice

DL POLY 2 uses a workspace array named buffer in several routines. Its declared size
is a compromise of several rôles and may sometimes be too small (though in the supplied
program, this should happen only very rarely). The point of failure is in the splice routine,
which is part of the RD-SHAKE algorithm.

Action:
Standard user response. Fix the parameter mxbuff.

Message 200: error - rdf buffer array too small in revive

This error indicates that the buffer array used to globally sum the rdf arrays in subroutine
revive is too small.

Action:
Standard user response. Fix the parameter mxbuff. Alternatively mxrdf can be set smaller.

Message 220: error - too many neutral groups in system

DL POLY 2 has a fixed limit on the number of charged groups in a simulation. This error
results if the number is exceeded.

Action:
Standard user response. Fix the parameter mxneut.

Message 230: error - neutral groups improperly arranged

In the DL POLY 2 FIELD file the charged groups must be defined in consecutive order.
This error results if this convention is not adhered to.

c©CCLRC 196

Action:
The arrangement of the data in the FIELD file must be sorted. All atoms in the same
group must be arranged consecutively. Note that reordering the file in this way implies a
rearrangement of the CONFIG file also.

Message 250: error - Ewald sum requested with neutral groups

DL POLY 2 will not permit the use of neutral groups with the Ewald sum. This error
results if the two are used together.

Action:
Either remove the neut directive from the FIELD file or use a different method to evaluate
the electrostatic interactions.

Message 260: error - parameter mxexcl exceeded in excludeneu routine

An error has been detected in the construction of the excluded atoms list for neutral groups.
This occurs when the parameter mxexcl is exceeded in the excludeneu routine.

Action:
Standard user response. Fix parameter mxexcl.

Message 300: error - incorrect boundary condition in parlink

The use of link cells in DL POLY 2 implies the use of appropriate boundary conditions.
This error results if the user specifies octahedral, dodecahedral or slab boundary conditions.

Action:
The simulation must be run with cubic, orthorhombic or parallelepiped boundary condi-
tions.

Message 301: error - too many rigid body types

The maximum number of rigid body types permitted by DL POLY 2 has been exceeded.

Action:
Standard user response. Fix the parameter mxungp.

Message 302: error - too many sites in rigid body

This error arises when DL POLY 2 finds that the number of sites in a rigid body exceeds
the dimensions of the approriate storage arrays.

Action:
Standard user response. Fix the parameter mxngp.

c©CCLRC 197

Message 303: error - too many rigid bodies specified

The maximum number of rigid bodies in a simulation has been reached. Do not confuse
this with message 304 below.

Action:
Standard user response. Fix the parameter mxgrp.

Message 304: error - too many rigid body sites in system

This error occurs when the total number of sites within all rigid bodies exceeds the permit-
ted maximum. Do not confuse this with message 303 above.

Action:
Standard user response. Fix the parameter mxgatms.

Message 305: error - box size too small for link cells

The link cells algorithm in DL POLY 2 cannot work with less than 27 link cells. Depending
on the cell size and the chosen cut-off, DL POLY 2 may decide that this minimum cannot
be achieved and terminate.

Action:
If a smaller cut-off is acceptable use it. Otherwise do not use link cells. Consider running
a larger system, where link cells will work.

Message 306: error - failed to find principal axis system

This error indicates that the routine quatbook has failed to find the principal axis for a
rigid unit.

Action:
This is an unlikely error. The code should correctly handle linear, planar and 3-dimensional
rigid units. Check the definition of the rigid unit in the CONFIG file, if sensible report the
error to the authors.

Message 310: error - quaternion setup failed

This error indicates that the routine quatbook has failed to reproduce all the atomic po-
sitions in rigid units from the centre of mass and quaternion vectors it has calculated.

Action:
Check the contents of the CONFIG file. DL POLY 2 builds its local body description of a
rigid unit type from the first occurrence of such a unit in the CONFIG file. The error most
likely occurs because subsequent occurrences were not sufficiently similar to this reference

c©CCLRC 198

structure. If the problem persists increase the value of the variable tol in quatbook
and recompile. If problems still persist double the value of dettest in quatbook and
recompile. If you still encounter problems contact the authors.

Message 320: error - site in multiple rigid bodies

DL POLY 2 has detected that a site is shared by two or more rigid bodies. There is no
integration algorithm available in this version of the package to deal with this type of model.

Action:
The only course is to redefine the molecular model (e.g. introducing flexible bonds and
angles in suitable places) to allow DL POLY 2 to proceed.

Message 321: error - quaternion integrator failed

The quaternion algorithm has failed to converge. If the maximum number of permitted
iterations is exceeded, the program terminates. Possible causes include: a bad starting
configuration; too large a time step used; incorrect force field specification; too high a tem-
perature; inconsistent constraints involving shared atoms etc.

Action:
Corrective action depends on the cause. Try reducing the timestep or running a zero kelvin
structure optimization for a hundred timesteps or so. It is unlikely that simply increasing
the iteration number will cure the problem, but you can try: follow the standard user
response to increase the parameter mxquat. But the trouble is much more likely to be
cured by careful consideration of the physical system being simulated. For example, is the
system stressed in some way? Too far from equilibrium?

Message 330: error - mxewld parameter incorrect

DL POLY 2 has two strategies for parallelization of the reciprocal space part of the Ewald
sum. If ewald1 is used the parameter mxewld should equal the parameter msatms. If
ewald1a is used this parameter should equal mxatms.

Action:
Standard user response. Set the parameter mxewld to the value appropriate for the version
of ewald1 you are using. Recompile the program.

Message 331: error - mxhke parameter incorrect

The parameter mxhke, which defines the dimension of some arrays used in the Hautman-
Klein Ewald method, should equal the parameter msatms.

c©CCLRC 199

Action:
Standard user response. Set the parameter mxhke to the value regquired. Recompile the
program.

Message 332: error - mxhko parameter too small

The parameter mxhko defines the maximum order for the Taylor expansion implicit in the
Hautman-Klein Ewald method. DL POLY 2 has a maximum of mxhko = 3, but it can be
set to less in some implementations. If this error arises when the user requestes an order
in excess of this parameter.

Action:
Standard user response. Set the parameter mxhko to a higher value (if it is <3) and
recompile the program. Alternatively request a lower order in the CONTROL file through
the nhko variable (see 4.1.1).

Message 340: error - invalid integration option requested

DL POLY 2 has detected an incompatibility in the simulation instructions, namely that
the requested integration algorithm is not compatible with the physical model. It may be
possible to override this error trap, but it is up to the user to establish if this is sensible.
Action:
This is a non recoverable error, unless the user chooses to override the restriction.

Message 350: error - too few degrees of freedom

This error can arise if a small system is being simulated and the number of constraints
applied is too large.

Action:
Simulate a larger system or reduce the number of constraints.

Message 360: error - frozen atom found in rigid body

DL POLY 2 does not permit a site in a rigid body to be frozen i.e. fixed in one location in
space.

Action:
Remove the ‘freeze’ condition from the site concerned. Consider using a very high site mass
to achieve a similar effect.

Message 380: error - simulation temperature not specified

DL POLY 2 has failed to find a temp directive in the CONTROL file.

c©CCLRC 200

Action:
Place a temp directive in the CONTROL file, with the required temperature specified.

Message 381: error - simulation timestep not specified

DL POLY 2 has failed to find a timestep directive in the CONTROL file.

Action:
Place a timestep directive in the CONTROL file, with the required timestep specified.

Message 382: error - simulation cutoff not specified

DL POLY 2 has failed to find a cutoff directive in the CONTROL file.

Action:
Place a cutoff directive in the CONTROL file, with the required forces cutoff specified.

Message 383: error - simulation forces option not specified

DL POLY 2 has failed to find any directive specifying the electrostatic interactions options
in the CONTROL file.

Action:
Ensure the CONTROL file contains at least one directive specifying the electrostatic po-
tentials (e.g. ewald, coul, no electrostatics etc.)

Message 384: error - verlet strip width not specified

DL POLY 2 has failed to find the delr directive in the CONTROL file.

Action:
Insert a delr directive in the CONTROL file, specifying the width of the verlet strip
augmenting the forces cutoff.

Message 385: error - primary cutoff not specified

DL POLY 2 has failed to find the prim directive in the CONTROL file. Necessary only if
multiple timestep option required.

Action:
Insert a prim directive in the CONTROL file, specifying the primary cutoff radius in the
multiple timestep algorithm.

c©CCLRC 201

Message 386: error - primary cutoff larger than rcut

The primary cutoff specified by the prim directive in the CONTROL file exceeds the value
specified for the forces cutoff (directive cut). Applies only if the multiple timestep option
is required.

Action:
Locate the prim directive in the CONTROL file, and alter the chosen cutoff. Alternatively,
increase the real space cutoff specified with the cut directive. Take care to avoid error
number 398.

Message 387: error - system pressure not specified

The target system pressure has not been specified in the CONTROL file. Applies to NPT
simulations only.

Action:
Insert a press directive in the CONTROL file specifying the required system pressure.

Message 388: error - npt incompatible with multiple timestep

The use of NPT (constant pressure) and temperature is not compatible with the multiple
timestep option.

Action:
Simulation must be run at fixed volume in this case. But note it may be possible to use
NPT without the multiple timestep, in ourder to estimate the required system volume, then
switch back to multiple timestep and NVT dynamics at the required volume.

Message 389: number of pimd beads not specified in field file

The user has failed to specify how many quantum beads is required in a Path Integral
Molecular Dyamics simulation. Applies to PIMD version of DL POLY 2 only.

Action:
The required numer of beads must be specified in the FIELD file.

Message 390: error - npt ensemble requested in non-periodic system

A non-periodic system has no defined volume, hence the NPT algorithm cannot be applied.

Action:
Either simulate the system with a periodic boundary, or use another ensemble.

c©CCLRC 202

Message 391: incorrect number of pimd beads in config file

The CONFIG file must specify the position of all the beads in a PIMD simulation, not just
the positions of the parent atoms, otherwise this error results.

Action:
The CONFIG file must be reconstructed to provide the required data.

Message 392: error - too many link cells requested

The number of link cells required for a given simulation exceeds the number allowed for by
the DL POLY 2 arrays.

Action:
Standard user response. Fix the parameter mxcell.

Message 394: error - minimum image arrays exceeded

The work arrays used in images have been exceeded.
Action: Standard user response. Fix the parameter mxxdf.

Message 396: error - interpolation array exceeded

DL POLY 2 has sought to read past the end of an interpolation array. This should never
happen!

Action:
Contact the authors.

Message 398: error - cutoff too small for rprim and delr

This error can arise when the multiple timestep option is used. It is essential that the
primary cutoff (rprim) is less than the real space cutoff (rcut) by at least the Verlet shell
width delr (preferably much larger!). DL POLY 2 terminates the run if this condition is
not satisfied.

Action:
Adjust rcut, rprim and delr to satisfy the DL POLY 2 requirement. These are defined
with the directives cut, prim and delr respectively.

Message 400: error - rvdw greater than cutoff

DL POLY 2 requires the real space cutoff (rcut) to be larger than, or equal to, the van
der Waals cutoff (rvdw) and terminates the run if this condition is not satisfied.

c©CCLRC 203

Action:
Adjust rvdw and rcut to satisfy the DL POLY 2 requirement.

Message 402: error - van der waals cutoff unset

The user has not set a cutoff (rvdw) for the van der Waals potentials. The simulation
cannot proceed without this being specified.

Action:
Supply a cutoff value for the van der Waals terms in the CONTROL file using the directive
rvdw, and resubmit job.

Message 410: error - cell not consistent with image convention

The simulation cell vectors appearing in the CONFIG file are not consistent with the spec-
ified image convention.

Action:
Locate the variable imcon in the CONFIG file and correct to suit the cell vectors.

Message 412: error - mxxdf parameter too small for shake routine

In DL POLY 2 the parameter mxxdf must be greater than or equal to the parameter mxcons.
If it is not, this error is a possible result.

Action:
Standard user response. Fix the parameter mxxdf.

Message 414: error - conflicting ensemble options in CONTROL file

DL POLY 2 has found more than one ensemble directive in the CONTROL file.

Action:
Locate extra ensemble directives in CONTROL file and remove.

Message 416: error - conflicting force options in CONTROL file

DL POLY 2 has found incompatible directives in the CONTROL file specifying the elec-
trostatic interactions options.

Action:
Locate the conflicting directives in the CONTROL file and correct.

c©CCLRC 204

Message 418: error - bond vector work arrays too small in bndfrc

The work arrays in bndfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 419: error - bond vector work arrays too small in angfrc

The work arrays in angfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 420: error - bond vector work arrays too small in tethfrc

The work arrays in tethfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 421: error - bond vector work arrays too small in dihfrc

The work arrays in dihfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 422: error - all-pairs must use multiple timestep

In DL POLY 2 the ‘all pairs’ option must be used in conjunction with the multiple timestep.

Action:
Activate the multiple timestep option in the CONTROL file and resubmit.

Message 423: error - bond vector work arrays too small in shlfrc

The dimensions of the interatomic distance vectors have been exceeded in subroutine shl-
frc.

Action:
Standard user response. Fix the parameter msbad. Set equal to the value of the parameter
mxshl.

c©CCLRC 205

Message 424: error - electrostatics incorrect for all-pairs

When using the all pairs option in conjunction with electrostatic forces, the electrostatics
must be handled with either the standard Coulomb sum, or with the distance dependent
dielectric.

Action:
Rerun the simulation with the appropriate electrostatic option.

Message 425: error - transfer buffer array too small in shlmerge

The buffer used to transfer data between nodes in the subroutine shlmerge has been di-
mensioned too small.

Action:
Standard user response. Fix the parameter mxbuff.

Message 426: error - neutral groups not permitted with all-pairs

DL POLY 2 will not permit simulations using both the neutral group and all pairs options
together.

Action:
Switch off one of the conflicting options and rerun.

Message 427: error - bond vector work arrays too small in invfrc

The work arrays in subroutine invfrc have been exceeded.

Action:
Standard user response. Fix the parameter msbad.

Message 430: error - integration routine not available

A request for a nonexistent ensemble has been made or a request with conflicting options
that DL POLY 2 cannot deal with (e.g. a Evans thermostat with rigid body equations of
motion).

Action:
Examine the CONTROL and FIELD files and remove inappropriate specifications.

Message 432: error - intlist failed to assign constraints

If the required simulation has constraint bonds DL POLY 2 attempts to apportion the
molecules to processors so that, if possible, there are no shared atoms between processors.
If this is not possible, one or more molecules may be split between processors. This message

c©CCLRC 206

indicates that the code has failed to carry out either of these successfully.

Action:
The error may arise from a compiler error. Try recompiling intlist without the optimiza-
tion flag turned on. If the problem persists it should be reported to the authors, (after
checking the input data for inconsistencies).

Message 433: error - specify rcut before the Ewald sum precision

When specifying the desired precision for the Ewald sum in the CONTROL file, it is first
necessary to specify the real space cutoff rcut.

Action:
Place the cut directive before the ewald precision directive in the CONTROL file and
rerun.

Message 434: error - illegal entry into STRESS related routine

The calculation of the stress tensor in DL POLY 2 requires additional code that must be
included at compile time through the use of the STRESS keyword. If this is not done, and
DL POLY 2 is later required to calculate the stress tensor, this error will result.

Action:
The program must be recompiled with the STRESS keyword activated. This will ensure
all the relevant code is in place. See section 3.2.1.

Message 436: error - unrecognised ensemble

An unknown ensemble option has been specified in the CONTROL file.

Action:
Locate ensemble directive in the CONTROL file and amend appropriately.

Message 438: error - PMF constraints failed to converge

The constraints in the potential of mean force algorithm have not converged in the permit-
ted number of cycles. (The SHAKE algorithm for PMF constraints is iterative.) Possible
causes include: a bad starting configuration; too large a time step used; incorrect force field
specification; too high a temperature; inconsistent constraints involving shared atoms etc.

Action:
Corrective action depends on the cause. It is unlikely that simply increasing the iteration
number will cure the problem, but you can try: follow standard user response to increase the
parameter mxshak. But the trouble is much more likely to be cured by careful consideration

c©CCLRC 207

of the physical system being simulated. For example, is the system stressed in some way?
Too far from equilibrium?

Message 440: error - undefined angular potential

A form of angular potential has been requested which DL POLY 2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL POLY 2 if this is possible. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines sysdef and angfrc will be
required.

Message 442: error - undefined three body potential

A form of three body potential has been requested which DL POLY 2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL POLY 2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines sysdef and thbfrc will be
required.

Message 443: error - undefined four body potential

DL POLY 2 has been requested to process a four-body potential it does not recognise.

Action:
Check the FIELD file and make sure the keyword is correctly defined. Make sure that
subroutine fbpfrc contains the code necessary to deal with the requested potential. Add
the code required if necessary, by amending subroutines sysdef and fbpfrc.

Message 444: error - undefined bond potential

DL POLY 2 has been requested to process a bond potential it does not recognise.

Action:
Check the FIELD file and make sure the keyword is correctly defined. Make sure that
subroutine bndfrc contains the code necessary to deal with the requested potential. Add
the code required if necessary, by amending subroutines sysdef and bndfrc.

Message 446: error - undefined electrostatic key in dihfrc

The subroutine dihfrc has detected a request for an unknown kind of electrostatic model.

c©CCLRC 208

Action:
The probable source of the error is an improperly described force field. Check the CON-
TROL file and FIELD files for incompatible requirements.

Message 447: error - 1-4 separation exceeds cutoff range

In the subroutine dihfrc the distance between the 1-4 atoms in the potential is larger than
the cutoff that is applied to the 1-4 potential, meaning the potential will not be computed,
though it may be an essential component of the dihedral force and not necessarily a van-
ishing force.

Action:
The probable source of the error is an improperly described force field. Effectively the 1-4
distance is not being restrained sufficently. Check the 1-4 potential parameters and the
valence angles that help define the dihedral geometry. If these are correct, then you may
have to comment out this error condition in the dihfrc.f subroutine, but beware that when
the 1-4 atoms are too widely separated, the dihedral angle can become indeterminable.

Message 448: error - undefined dihedral potential

A form of dihedral potential has been requested which DL POLY 2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL POLY 2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines sysdef and dihfrc (and its
variants) will be required.

Message 449: error - undefined inversion potential

A form of inversion potential has been encountered which DL POLY 2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL POLY 2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines sysdef and invfrc will be
required.

Message 450: error - undefined tethering potential

A form of tethering potential has been requested which DL POLY 2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable

c©CCLRC 209

to DL POLY 2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines sysdef and tethfrc will be
required.

Message 451: error - three body potential cutoff undefined

The cutoff radius for a three body potential has not been defined in the FIELD file.

Action:
Locate the offending three body force potential in the FIELD file and add the required
cutoff. Resubmit the job.

Message 452: error - undefined pair potential

A form of pair potential has been requested which DL POLY 2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL POLY 2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines sysdef and forgen will be
required.

Message 453: error - four body potential cutoff undefined

The cutoff radius for a four-body potential has not been defined in the FIELD file.

Action:
Locate the offending four body force potential in the FIELD file and add the required cut-
off. Resubmit the job.

Message 454: error - undefined external field

A form of external field potential has been requested which DL POLY 2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL POLY 2 if this is reasonable. Alternatively, you may consider defining the required
potential in the code yourself. Amendments to subroutines sysdef and extnfld will be
required.

Message 456: error - core and shell in same rigid unit

It is not sensible to fix both the core and the shell of a polarisable atom in the same molec-
ular unit. Consequently DL POLY 2 will abandon the job if this is found to be the case.

c©CCLRC 210

Action:
Locate the offending core-shell unit (there may be more than one in your FIELD file) and
release the shell (preferably) from the rigid body specification.

Message 458: error - too many PMF constraints - param. mspmf too small

The number of constraints in the potential of mean force is too large. The dimensions of
the appropriate arrays in DL POLY 2 must be increased.

Action:
Standard user response. Fix the parameter mspmf.

Message 460: error - too many PMF sites - parameter mxspmf too small

The number of sites defined in the potential of mean force is too large. The dimensions of
the appropriate arrays in DL POLY 2 must be increased.

Action:
Standard user response. Fix the parameter mxspmf.

Message 461: error - undefined metal potential

The user has requested a metal potential DL POLY 2 does not recognise.

Action:
Locate the metal potential specification in the FIELD file and replace with a recognised
potential.

Message 462: error - PMF UNIT record expected

A pmf unit directive was expected as the next record in the FIELD file but was not found.

Action:
Locate the pmf directive in the FIELD file and examine the following entries. Insert the
missing pmf unit directive and resubmit.

Message 463: error - unidentified atom in metal potential list

DL POLY 2 checks all the metal potentials specified in the FIELD file and terminates the
program if it can’t identify any one of them from the atom types specified earlier in the file.

Action:
Correct the erroneous entry in the FIELD file and resubmit.

c©CCLRC 211

Message 465: error - calculated pair potential index too large

A zero or negative value for the thermostat time constant has been encountered in the
CONTROL file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the
time constant.

Message 464: error - thermostat time constant must be > 0.d0

A zero or negative value for the thermostat time constant has been encountered in the
CONTROL file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the
time constant.

Message 466: error - barostat time constant must be > 0.d0

A zero or negative value for the barostat time constant has been encountered in the CON-
TROL file.

Action:
Locate the ensemble directive in the CONTROL file and assign a positive value to the
time constant.

Message 468: error - r0 too large for snm potential with current cutoff

The specified location (r0) of the potential minimum for a shifted n-m potential exceeds
the specified potential cutoff. A potential with the desired minimum cannot be created.

Action:
To obtain a potential with the desired minimum it is necessary to increase the van der
Waals cutoff. Locate the rvdw directive in the CONTROL file and reset to a magnitude
greater than r0. Alternatively adjust the value of r0 in the FIELD file. Check that the
FIELD file is correctly formatted.

Message 470: error - n<m in definition of n-m potential

The specification of a n-m potential in the FIELD file implies that the exponent m is larger
than exponent n. (Not all versions of DL POLY 2 are affected by this.)

Action:
Locate the n-m potential in the FIELD file and reverse the order of the exponents. Resubmit
the job.

c©CCLRC 212

Message 474: error - mxxdf too small in parlst subroutine

The parameter mxxdf defining working arrays in subroutine parlst of DL POLY 2 has
been found to be too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 475: error - mxxdf too small in parlst nsq subroutine

The parameter mxxdf defining working arrays in subroutine parlst nsq DL POLY 2 has
been found to be too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 476: error - mxxdf too small in parneulst subroutine

The parameter mxxdf defining working arrays in subroutine parneulst is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 477: error - mxxdf too small in prneulst subroutine

The parameter mxxdf defining working arrays in subroutine prneulst is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 478: error - mxxdf too small in forcesneu subroutine

The parameter mxxdf defining working arrays in subroutine forcesneu is too small.

Action:
Standard user response. Fix the parameter mxxdf.

Message 479: error - mxxdf too small in multipleneu subroutine

The parameter mxxdf defining working arrays in subroutine multipleneu is too small.

Action:
Standard user response. Fix the parameter mxxdf.

c©CCLRC 213

Message 484: error - only one potential of mean force permitted

It is not permitted to define more than one potential of mean force in the FIELD file.

Action:
Check that the FIELD file contains only one PMF specification. If more than one is needed,
DL POLY 2 cannot handle it.

Message 486: error - HK real space screening function cutoff violation

DL POLY 2 has detected an unacceptable degree of inaccuracy in the screening function
near the radius of cutoff in real space, which implies the Hautman-Klein Ewald method will
not be sufficiently accurate.

Action:
The user should respecify the HK control parameters given in the CONTROL file. Either
the convergence parameter should be increased or the sum expanded to incorporate more
images of the central cell. (Warning: increasing the convergence parameter may cause
failure in the reciprocal space domain.) (See 4.1.1).

Message 487: error - HK recip space screening function cutoff violation

DL POLY 2 has detected an unacceptable degree of inaccuracy in the screening function
near the radius of cutoff in reciprocal space, which implies the Hautman-Klein Ewald method
will not be sufficiently accurate.

Action:
The user should respecify the HK control parameters given in the CONTROL file. Either
the convergence parameter should be reduced or more k-vectors used. (Warning: reducing
the convergence parameter may cause failure in the real space domain.) (See 4.1.1).

Message 488: error - HK lattice control parameter set too large

The Hautman-Klein Ewald method in DL POLY 2 permits the user to perform a real space
sum over nearest-neighbour and next-nearest-neighbour cells (i.e. up to nlatt=2). If the
user specifies a larger sum than this, this error will result.

Action:
The user should respecify the HK control parameters given in the CONTROL file and set
nlatt to a maximum of 2. (See 4.1.1).

Message 490: error - PMF parameter mxpmf too small in passpmf

The bookkeeping arrays have been exceeded in passpmf

c©CCLRC 214

Action:
Standard user response. Fix the parameter mxpmf. Set equal to mxatms.

Message 492: error - parameter mxcons < number of PMF constraints

The parameter mxcons is too small for the number of PMF constraints in the system.

Action:
Standard user response. Fix the value of mxcons.

Message 494: error in csend: pvmfinitsend

The PVM routine pvmfinitsend has returned an error. It is invoked by the routine csend.

Action:
Check your system implementation of PVM.

Message 496: error in csend: pvmfpack

The PVM routine pvmfpack has returned an error. It is invoked by the routine csend.

Action:
Check your system implementation of PVM.

Message 498: error in csend: pvmfsend

The PVM routine pvmfsend has returned an error. It is invoked by the routine csend.

Action:
Check your system implementation of PVM.

Message 500: error in crecv: pvmfrecv

The PVM routine pvmfrecv has returned an error. It is invoked by the routine crecv.

Action:
Check your system implementation of PVM.

Message 502: error in crecv: pvmfunpack

The PVM routine pvmfunpack has returned an error. It is invoked by the routine crecv.

Action:
Check your system implementation of PVM.

c©CCLRC 215

Message 504: error - cutoff too large for TABLE file

The requested cutoff exceeds the information in the TABLE file.

Action:
Reduce the value of the vdw cutoff (rvdw) in the CONTROL file or reconstruct the TABLE
file.

Message 506: error - work arrays too small for quaternion integration

The working arrays associated with quaternions are too small for the size of system being
simulated. They must be redimensioned.

Action:
Standard user response. Fix the parameter msgrp.

Message 508: error - rigid bodies not permitted with RESPA algorithm

The RESPA algorithm implemented in DL POLY 2 is for atomic systems only. Rigid bod-
ies or constraints cannot be treated.

Action:
There is no cure for this. The code simply does not have this capability. Consider writing
it for yourself!

Message 510: error - structure optimiser not permitted with RESPA

The RESPA algorithm in DL POLY 2 has not been implemented to work with the struc-
ture optimizer. You have asked for a forbidden operation.

Action:
There is no fix for this. In any case it does not make sense to use the RESPA algorithm
for this purpose.

Message 513: error - SPME not available for given boundary conditions

The SPME algorithm in DL POLY 2 does not work for aperiodic (IMCON=0) or slab
(IMCON=6) boundary conditions.
Action:
If the system must have aperiodic or slab boundaries, nothing can be done. In the latter
case however, it may be acceptable to represent the same system with slabs replicated in
the z direction, thus permitting a periodic simulation.

c©CCLRC 216

Message 514: error - SPME routines have not been compiled in

The inclusion of the SPME algorithm in DL POLY 2 is optional at the compile stage. If
the executable does not contain the SPME routines, but the method is requested by the
user, this error results.

Action:
DL POLY 2 must be recompiled with the SPME flags set. Beware that your system has
the necessary fast Fourier transform routines to permit this.

Message 1000: error - failed allocation of configuration arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1010: error - failed allocation of angle arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1011: error - failed allocation of dihedral arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1012: error - failed allocation of exclude arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1013: error - failed allocation of rigid body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 217

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1014: error - failed allocation of vdw arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1020: error - failed allocation of angle work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1030: error - failed allocation of bond arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1040: error - failed allocation of bond work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1050: error - failed allocation of dihedral arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 218

Message 1060: error - failed allocation of dihedral work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1070: error - failed allocation of constraint arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1090: error - failed allocation of site arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1100: error - failed allocation of core shell arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1110: error - failed allocation of core shell work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1120: error - failed allocation of inversion arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 219

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1130: error - failed allocation of inversion work arrays’

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1140: error - failed allocation of four-body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1150: error - failed allocation of four-body work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1170: error - failed allocation of three-body arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1180: error - failed allocation of three-body work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 220

Message 1200: error - failed allocation of external field arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1210: error - failed allocation of pmf arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1220: error - failed allocation of pmf lf or pmf vv work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1230: error - failed allocation of pmf shake work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1240: error - failed allocation of ewald arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1250: error - failed allocation of excluded atom arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 221

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1260: error - failed allocation of tethering arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1270: error - failed allocation of tethering work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1280: error - failed allocation of metal arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1290: error - failed allocation of work arrays in nvt h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1300: error - failed allocation of dens0 array in npt b0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 222

Message 1310: error - failed allocation of work arrays in npt b0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1320: error - failed allocation of dens0 array in npt h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1330: error - failed allocation of work arrays in npt h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1340: error - failed allocation of dens0 array in nst b0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1350: error - failed allocation of work arrays in nst b0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1360: error - failed allocation of dens0 array in nst h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 223

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1370: error - failed allocation of work arrays in nst h0.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1380: error - failed allocation of work arrays in nve 1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1390: error - failed allocation of work arrays in nvt e1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1400: error - failed allocation of work arrays in nvt b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1410: error - failed allocation of work arrays in nvt h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 224

Message 1420: error - failed allocation of work arrays in npt b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1430: error - failed allocation of density array in npt b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1440: error - failed allocation of work arrays in npt h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1450: error - failed allocation of density array in npt h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1460: error - failed allocation of work arrays in nst b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1470: error - failed allocation of density array in nst b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 225

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1480: error - failed allocation of work arrays in nst h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1490: error - failed allocation of density array in nst h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1500: error - failed allocation of work arrays in nveq 1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1510: error - failed allocation of work arrays in nvtq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1520: error - failed allocation of work arrays in nvtq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 226

Message 1530: error - failed allocation of work arrays in nptq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1540: error - failed allocation of density array in nptq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1550: error - failed allocation of work arrays in nptq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1560: error - failed allocation of density array in nptq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1570: error - failed allocation of work arrays in nstq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1580: error - failed allocation of density array in nstq b1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 227

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1590: error - failed allocation of work arrays in nstq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1600: error - failed allocation of density array in nstq h1.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1610: error - failed allocation of work arrays in qshake.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1615: error - failed allocation of work arrays in qrattle q.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1620: error - failed allocation of work arrays in nveq 2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 228

Message 1625: error - failed allocation of work arrays in qrattle v.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1630: error - failed allocation of work arrays in nvtq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1640: error - failed allocation of work arrays in nvtq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1650: error - failed allocation of work arrays in nptq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1660: error - failed allocation of density array in nptq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1670: error - failed allocation of work arrays in nptq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 229

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1680: error - failed allocation of density array in nptq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1690: error - failed allocation of work arrays in nstq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1700: error - failed allocation of density array in nstq b2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1710: error - failed allocation of work arrays in nstq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1720: error - failed allocation of density array in nstq h2.f

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 230

Message 1730: error - failed allocation of HK Ewald arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1740: error - failed allocation of property arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1750: error - failed allocation of spme arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1760: error - failed allocation of ewald spme.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1770: error - failed allocation of quench.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1780: error - failed allocation of quatqnch.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 231

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1790: error - failed allocation of quatbook.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1800: error - failed allocation of intlist.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1810: error - failed allocation of forces.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1820: error - failed allocation of forcesneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1830: error - failed allocation of neutlst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 232

Message 1840: error - failed allocation of multiple.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1850: error - failed allocation of multipleneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1860: error - failed allocation of multiple nsq.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1870: error - failed allocation of parlst nsq.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1880: error - failed allocation of parlst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1890: error - failed allocation of parlink.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 233

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1900: error - failed allocation of parlinkneu.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1910: error - failed allocation of parneulst.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1920: error - failed allocation of strucopt.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1930: error - failed allocation of vertest.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1940: error - failed allocation of pair arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 234

Message 1945: error - failed allocation of tersoff arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1950: error - shell relaxation cycle limit exceeded

There has been a convergence failure during the execution of relaxed shell polarisation
model. Probable cause: the system is unstable e.g. in an abnormally high energy configu-
ration.
Action:
Increasing the maximum number of cycles permitted in the shell relaxation set by variable
mxpass in the dlpoly.f root program may help, but it is unlikely. A better option is to relax
the structure somehow first e.g. using the zero option in the CONTROL file.

Message 1953: error - tersoff radius of cutoff not defined

The Tersoff potential requires the user to specify a short ranged cutoff as part of the po-
tential description. This is distinct from the normal cutoff used by the Van der Waals
interactions.
Action:
Check the Tersoff potential description in the FIELD file. Make sure it is fully complete.

Message 1955: error - failed allocation of tersoff work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1960: error - conflicting shell option in FIELD file

The relaxed shell and adiabatic shell polarisation options in DL POLY 2 are mutually ex-
clusive. The user has request both options in the same simulation.
Action:
Locate the occurrences of the shell directives in the FIELD file and ensure they specify the
same shell model.

c©CCLRC 235

Message 1970: error - failed allocation of shell relax work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1972: error - unknown tersoff potential defined in FIELD file

DL POLY 2 has failed to recognise the Tersoff potentials specified by the user in the FIELD
file.

Action:
Locate the Tersoff potential specification in the FIELD fiel and ensure it is correctly defined.

Message 1974: error - incorrect period boundary in tersoff.f

The implementation of the Tersoff potential in DL POLY 2 is based on the link cell algo-
rithm, which is suitable for rectangular or triclinic MD cells only. It is not suitable for any
other shape of MD cell.
Action:
The user must reconstruct the system according to one of the permitted periodic boundaries.

Message 1976: error - too many link cells required in tersoff.f

The number of link cells required by the Tersoff routines exceeds the amount allowed for by
DL POLY 2 . This can happen if the system is simulated under NPT or NST conditions
and the system volume increases dramatically.
Action:
The problem may cure itself on restart, provided the restart configuration has already ex-
pande significantly. Otherwise the user must locate and adjust the mxcell according to the
standard response procedure.

Message 1978: error - undefined potential in tersoff.f

A form of Tersoff potential has been requested which DL POLY 2 does not recognise.

Action:
Locate the offending potential in the FIELD file and remove. Replace with one acceptable
to DL POLY 2 if this is reasonable. Alternatively, you may consider defining the required

c©CCLRC 236

potential in the code yourself. Amendments to subroutines sysdef and tersoff will be
required.

Message 1980: error - failed allocation of nvevv 1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 1990: error - failed allocation of nvtvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2000: error - failed allocation of nvtvv e1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2010: error - failed allocation of nvtvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2020: error - failed allocation of nptvv b1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 237

Message 2030: error - failed allocation of nptvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2040: error - failed allocation of nptvv h1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2050: error - failed allocation of nptvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2060: error - failed allocation of nstvv b1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2070: error - failed allocation of nstvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2080: error - failed allocation of nstvv h1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 238

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2090: error - failed allocation of nstvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2100: error - failed allocation of nveqvv 1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2110: error - failed allocation of nveqvv 2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2120: error - failed allocation of nvtqvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2130: error - failed allocation of nvtqvv b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 239

Message 2140: error - failed allocation of nvtqvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2150: error - failed allocation of nvtqvv h2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2160: error - failed allocation of nptqvv b1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2170: error - failed allocation of nptqvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2180: error - failed allocation of nptqvv b2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2190: error - failed allocation of nptqvv b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 240

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2200: error - failed allocation of nptqvv h1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2210: error - failed allocation of nptqvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2220: error - failed allocation of nptqvv h2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2230: error - failed allocation of nptqvv h2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2240: error - failed allocation of nstqvv b1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

c©CCLRC 241

Message 2250: error - failed allocation of nstqvv b1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2260: error - failed allocation of nstqvv b2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2270: error - failed allocation of nstqvv b2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2280: error - failed allocation of nstqvv h1.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2290: error - failed allocation of nstqvv h1.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2300: error - failed allocation of nstqvv h2.f dens0 array

This is a memory allocation error. Probable cause: excessive size of simulated system.

c©CCLRC 242

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Message 2310: error - failed allocation of nstqvv h2.f work arrays

This is a memory allocation error. Probable cause: excessive size of simulated system.

Action:
If the simulated system cannot be replaced by a smaller one, the user must consider using
more processors or a machine with larger memory per processor.

Appendix D

Subroutine Locations

The Locations of Subroutines and Functions

The following table lists the subroutines and functions in DL POLY 2 and which source
files they can be found in.

Subroutine Name Type Located in Source File
abort config read subroutine define system.f
abort control read subroutine define system.f
abort field read subroutine define system.f
abort table read subroutine vdw terms.f
abort table read subroutine vdw terms 4pt.f
abort table read subroutine vdw terms rsq.f
abortscan subroutine setup program.f
alloc ang arrays subroutine angles module.f
alloc bnd arrays subroutine bonds module.f
alloc config arrays subroutine config module.f
alloc csh arrays subroutine core shell module.f
alloc dih arrays subroutine dihed module.f
alloc ewald arrays subroutine ewald module.f
alloc exc arrays subroutine exclude module.f
alloc fbp arrays subroutine four body module.f
alloc fld arrays subroutine external field module.f
alloc hke arrays subroutine hkewald module.f
alloc inv arrays subroutine inversion module.f
alloc met arrays subroutine metal module.f
alloc pair arrays subroutine pair module.f
alloc pmf arrays subroutine pmf module.f
alloc prp arrays subroutine property module.f
alloc rgbdy arrays subroutine rigid body module.f
alloc shake arrays subroutine shake module.f
alloc site arrays subroutine site module.f

243

c©CCLRC 244

alloc spme arrays subroutine spme module.f
alloc tbp arrays subroutine three body module.f
alloc ter arrays subroutine tersoff module.f
alloc tet arrays subroutine tether module.f
alloc vdw arrays subroutine vdw module.f
angfrc subroutine angle terms.f
bndfrc subroutine bond terms.f
bodystress subroutine rigid body terms.f
bomb subroutine utility pack.f
bspcoe subroutine spme terms.f
bspgen subroutine spme terms.f
cell propagate subroutine ensemble tools.f
cell update subroutine ensemble tools.f
cerfr function hkewald terms.f
cfgscan subroutine setup program.f
check shells subroutine core shell terms.f
check syschg subroutine site terms.f
conscan subroutine setup program.f
copystring subroutine parse tools.f
corshl subroutine core shell terms.f
coul0 subroutine coulomb terms.f
coul0neu subroutine neu coul terms.f
coul1 subroutine coulomb terms.f
coul2 subroutine coulomb terms.f
coul2neu subroutine neu coul terms.f
coul3 subroutine coulomb terms.f
coul3neu subroutine neu coul terms.f
coul4 subroutine coulomb terms.f
cpy rtc subroutine utility pack.f
crecv subroutine basic comms.f
crecv subroutine serial.f
csend subroutine basic comms.f
csend subroutine serial.f
dblstr function parse tools.f
dcell subroutine utility pack.f
define angles subroutine angle terms.f
define atoms subroutine site terms.f
define bonds subroutine bond terms.f
define constraints subroutine shake terms.f
define core shell subroutine core shell terms.f
define dihedrals subroutine dihedral terms.f
define dihedrals subroutine dihedral terms 4pt.f
define dihedrals subroutine dihedral terms rsq.f
define external field subroutine external field terms.f

c©CCLRC 245

define four body subroutine four body terms.f
define inversions subroutine inversion terms.f
define metals subroutine metal terms.f
define metals subroutine metal terms 4pt.f
define metals subroutine metal terms rsq.f
define pmf subroutine pmf terms.f
define rigid body subroutine rigid body terms.f
define tersoff subroutine tersoff terms.f
define tethers subroutine tether terms.f
define three body subroutine three body terms.f
define units subroutine define system.f
define van der waals subroutine vdw terms.f
define van der waals subroutine vdw terms 4pt.f
define van der waals subroutine vdw terms rsq.f
denloc subroutine metal terms.f
denloc subroutine metal terms 4pt.f
denloc subroutine metal terms rsq.f
diffsn0 subroutine system properties.f
diffsn1 subroutine system properties.f
dihfrc subroutine dihedral terms.f
dihfrc subroutine dihedral terms 4pt.f
dihfrc subroutine dihedral terms rsq.f
dlpfft3 subroutine spme terms.f
duni function utility pack.f
ele prd subroutine utility pack.f
erfcgen subroutine ewald terms.f
erfcgen subroutine ewald terms 4pt.f
erfcgen subroutine ewald terms rsq.f
error subroutine error.f
ewald1 subroutine ewald terms.f
ewald1 subroutine ewald terms 4pt.f
ewald1 subroutine ewald terms rsq.f
ewald2 subroutine ewald terms.f
ewald2 subroutine ewald terms 4pt.f
ewald2 subroutine ewald terms rsq.f
ewald2neu subroutine neu ewald terms.f
ewald3 subroutine ewald terms.f
ewald3 subroutine ewald terms 4pt.f
ewald3 subroutine ewald terms rsq.f
ewald3 neu subroutine neu ewald terms.f
ewald4 subroutine ewald terms.f
ewald4 subroutine ewald terms 4pt.f
ewald4 subroutine ewald terms rsq.f
ewald spme subroutine spme terms.f

c©CCLRC 246

exclude subroutine exclude terms.f
exclude atom subroutine exclude terms.f
exclude link subroutine exclude terms.f
excludeneu subroutine exclude terms.f
exitcomms subroutine basic comms.f
exitcomms subroutine serial.f
extnfld subroutine external field terms.f
fbpfrc subroutine four body terms.f
fcap subroutine utility pack.f
findstring function parse tools.f
fldscan subroutine setup program.f
forces subroutine force drivers.f
forcesneu subroutine force drivers.f
forgen subroutine vdw terms.f
forgen subroutine vdw terms 4pt.f
forgen subroutine vdw terms rsq.f
fortab subroutine vdw terms.f
fortab subroutine vdw terms 4pt.f
fortab subroutine vdw terms rsq.f
freeze subroutine utility pack.f
gauss subroutine utility pack.f
gdsum subroutine basic comms.f
gdsum subroutine serial.f
getcom subroutine ensemble tools.f
getkin function kinetic terms.f
getkinf function kinetic terms.f
getking subroutine kinetic terms.f
getkinr function kinetic terms.f
getkins subroutine kinetic terms.f
getkint function kinetic terms.f
getmass function ensemble tools.f
getrec subroutine parse tools.f
getrotmat subroutine utility pack.f
getvom subroutine ensemble tools.f
getword subroutine parse tools.f
gimax subroutine basic comms.f
gimax subroutine serial.f
gisum subroutine basic comms.f
gisum subroutine serial.f
global sum forces subroutine utility pack.f
gstate subroutine basic comms.f
gstate subroutine serial.f
gsync subroutine basic comms.f
gsync subroutine serial.f

c©CCLRC 247

hkewald1 subroutine hkewald terms.f
hkewald2 subroutine hkewald terms.f
hkewald3 subroutine hkewald terms.f
hkewald4 subroutine hkewald terms.f
hkgen subroutine hkewald terms.f
images subroutine utility pack.f
initcomms subroutine basic comms.f
initcomms subroutine serial.f
intlist subroutine define system.f
intstr function parse tools.f
invert subroutine utility pack.f
invfrc subroutine inversion terms.f
jacobi subroutine utility pack.f
kinstr subroutine utility pack.f
kinstress subroutine kinetic terms.f
kinstressf subroutine kinetic terms.f
kinstressg subroutine kinetic terms.f
lf integrate subroutine lf integrate.f
lowcase subroutine parse tools.f
lrcmetal subroutine metal terms.f
lrcmetal subroutine metal terms 4pt.f
lrcmetal subroutine metal terms rsq.f
lrcorrect subroutine vdw terms.f
lrcorrect subroutine vdw terms 4pt.f
lrcorrect subroutine vdw terms rsq.f
machine subroutine basic comms.f
machine subroutine serial.f
matmul subroutine utility pack.f
merge subroutine merge hcube.f
merge subroutine merge systol.f
merge subroutine merge tools.f
merge subroutine serial.f
merge1 subroutine merge hcube.f
merge1 subroutine merge systol.f
merge1 subroutine merge tools.f
merge1 subroutine serial.f
merge4 subroutine merge hcube.f
merge4 subroutine merge systol.f
merge4 subroutine merge tools.f
merge4 subroutine serial.f
metgen subroutine metal terms.f
metgen subroutine metal terms 4pt.f
metgen subroutine metal terms rsq.f
multiple subroutine force drivers.f

c©CCLRC 248

multiple nsq subroutine force drivers.f
multipleneu subroutine force drivers.f
mynode function basic comms.f
mynode function serial.f
neutbook subroutine define system.f
neutlst subroutine force drivers.f
nodedim function basic comms.f
nodedim function serial.f
nosquish subroutine vv rotation 1.f
npt b1 subroutine lf motion 1.f
npt h1 subroutine lf motion 1.f
nptq b1 subroutine lf rotation 1.f
nptq b2 subroutine lf rotation 2.f
nptq h1 subroutine lf rotation 1.f
nptq h2 subroutine lf rotation 2.f
nptqscl p subroutine ensemble tools.f
nptqscl t subroutine ensemble tools.f
nptqvv b1 subroutine vv rotation 1.f
nptqvv b2 subroutine vv rotation 2.f
nptqvv h1 subroutine vv rotation 1.f
nptqvv h2 subroutine vv rotation 2.f
nptscale p subroutine ensemble tools.f
nptscale t subroutine ensemble tools.f
nptvv b1 subroutine vv motion 1.f
nptvv h1 subroutine vv motion 1.f
nst b1 subroutine lf motion 1.f
nst h1 subroutine lf motion 1.f
nstq b1 subroutine lf rotation 1.f
nstq b2 subroutine lf rotation 2.f
nstq h1 subroutine lf rotation 1.f
nstq h2 subroutine lf rotation 2.f
nstqmtk p subroutine ensemble tools.f
nstqscl p subroutine ensemble tools.f
nstqscl p2 subroutine ensemble tools.f
nstqscl t subroutine ensemble tools.f
nstqscl t2 subroutine ensemble tools.f
nstqvv b1 subroutine vv rotation 1.f
nstqvv b2 subroutine vv rotation 2.f
nstqvv h1 subroutine vv rotation 1.f
nstqvv h2 subroutine vv rotation 2.f
nstscale p subroutine ensemble tools.f
nstscale t subroutine ensemble tools.f
nstvv b1 subroutine vv motion 1.f
nstvv h1 subroutine vv motion 1.f

c©CCLRC 249

numnodes function basic comms.f
numnodes function serial.f
nve 1 subroutine lf motion 1.f
nveq 1 subroutine lf rotation 1.f
nveq 2 subroutine lf rotation 2.f
nveqvv 1 subroutine vv rotation 1.f
nveqvv 2 subroutine vv rotation 2.f
nvevv 1 subroutine vv motion 1.f
nvt b1 subroutine lf motion 1.f
nvt e1 subroutine lf motion 1.f
nvt h1 subroutine lf motion 1.f
nvtq b1 subroutine lf rotation 1.f
nvtq b2 subroutine lf rotation 2.f
nvtq h1 subroutine lf rotation 1.f
nvtq h2 subroutine lf rotation 2.f
nvtqscl subroutine ensemble tools.f
nvtqvv b1 subroutine vv rotation 1.f
nvtqvv b2 subroutine vv rotation 2.f
nvtqvv h1 subroutine vv rotation 1.f
nvtqvv h2 subroutine vv rotation 2.f
nvtscale subroutine ensemble tools.f
nvtvv b1 subroutine vv motion 1.f
nvtvv e1 subroutine vv motion 1.f
nvtvv h1 subroutine vv motion 1.f
parlink subroutine nlist builders.f
parlinkneu subroutine nlist builders.f
parlst subroutine nlist builders.f
parlst nsq subroutine nlist builders.f
parneulst subroutine nlist builders.f
parset subroutine setup program.f
passcon subroutine pass tools.f
passcon subroutine serial.f
passpmf subroutine pass tools.f
passpmf subroutine serial.f
passquat subroutine pass tools.f
passquat subroutine serial.f
pivot subroutine vv rotation 2.f
pmf rattle r subroutine pmf vv.f
pmf rattle v subroutine pmf vv.f
pmf shake subroutine pmf lf.f
pmf vectors subroutine pmf terms.f
pmflf subroutine pmf lf.f
pmfvv subroutine pmf vv.f
primlst subroutine nlist builders.f

c©CCLRC 250

prneulst subroutine nlist builders.f
qrattle r subroutine vv rotation 2.f
qrattle v subroutine vv rotation 2.f
qshake subroutine lf rotation 2.f
quatbook subroutine define system.f
quatqnch subroutine temp scalers.f
quench subroutine temp scalers.f
rdf0 subroutine system properties.f
rdf0neu subroutine system properties.f
rdf1 subroutine system properties.f
rdrattle r subroutine vv motion 1.f
rdrattle v subroutine vv motion 1.f
rdshake 1 subroutine lf motion 1.f
relax shells subroutine core shell terms.f
result subroutine system properties.f
revive subroutine system properties.f
rotate omega subroutine vv rotation 1.f
scdens subroutine metal terms.f
scdens subroutine metal terms 4pt.f
scdens subroutine metal terms rsq.f
scl csum subroutine utility pack.f
sdot0 function utility pack.f
sdot1 function utility pack.f
set block subroutine utility pack.f
shellsort subroutine utility pack.f
shlfrc subroutine core shell terms.f
shlmerge subroutine merge hcube.f
shlmerge subroutine merge systol.f
shlmerge subroutine merge tools.f
shlmerge subroutine serial.f
shlqnch subroutine temp scalers.f
shmove subroutine merge hcube.f
shmove subroutine merge systol.f
shmove subroutine merge tools.f
shmove subroutine serial.f
simdef subroutine define system.f
spl cexp subroutine spme terms.f
splice subroutine merge hcube.f
splice subroutine merge systol.f
splice subroutine merge tools.f
splice subroutine serial.f
spme for subroutine spme terms.f
srfrce subroutine vdw terms.f
srfrce subroutine vdw terms 4pt.f

c©CCLRC 251

srfrce subroutine vdw terms rsq.f
srfrceneu subroutine vdw terms.f
srfrceneu subroutine vdw terms 4pt.f
srfrceneu subroutine vdw terms rsq.f
static subroutine system properties.f
strip subroutine parse tools.f
striptext subroutine parse tools.f
strucopt subroutine strucopt.f
suttchen subroutine metal terms.f
suttchen subroutine metal terms 4pt.f
suttchen subroutine metal terms rsq.f
sysbook subroutine define system.f
sysdef subroutine define system.f
sysgen subroutine define system.f
sysinit subroutine define system.f
systemp subroutine define system.f
tergen subroutine tersoff terms.f
terint subroutine tersoff terms.f
tersoff subroutine tersoff terms.f
tersoff3 subroutine tersoff terms.f
tethfrc subroutine tether terms.f
thbfrc subroutine three body terms.f
timchk subroutine timchk.f
traject subroutine traject.f
traject subroutine traject u.f
update quaternions subroutine lf rotation 1.f
vertest subroutine nlist builders.f
vscaleg subroutine temp scalers.f
vv integrate subroutine vv integrate.f
xscale subroutine utility pack.f
zden0 subroutine system properties.f
zden1 subroutine system properties.f

Appendix E

Called Subroutines

Subroutines Called

The following table lists the subroutines in DL POLY 2 and which subroutines they call.

Calling routine | Called routine
angle_terms | copystring
angle_terms | error
angle_terms | gdsum
angle_terms | getrec
angle_terms | getword
angle_terms | gstate
angle_terms | images
angle_terms | lowcase
angles_module | error
basic_comms | MPI_BARRIER
basic_comms | MPI_COMM_RANK
basic_comms | MPI_COMM_SIZE
basic_comms | MPI_FINALIZE
basic_comms | MPI_RECV
basic_comms | MPI_allreduce
basic_comms | MPI_init
basic_comms | MPI_send
basic_comms | exit
basic_comms | gisum
bond_terms | copystring
bond_terms | error
bond_terms | gdsum
bond_terms | getrec
bond_terms | getword
bond_terms | gstate
bond_terms | images

252

c©CCLRC 253

bond_terms | lowcase
bonds_module | error
config_module | error
core_shell_module | error
core_shell_terms | error
core_shell_terms | gdsum
core_shell_terms | getrec
core_shell_terms | images
core_shell_terms | merge
define_system | abort_config_read
define_system | abort_control_read
define_system | abort_field_read
define_system | check_shells
define_system | check_syschg
define_system | copystring
define_system | dcell
define_system | define_angles
define_system | define_atoms
define_system | define_bonds
define_system | define_constraints
define_system | define_core_shell
define_system | define_dihedrals
define_system | define_external_field
define_system | define_four_body
define_system | define_inversions
define_system | define_metals
define_system | define_pmf
define_system | define_rigid_body
define_system | define_tersoff
define_system | define_tethers
define_system | define_three_body
define_system | define_units
define_system | define_van_der_waals
define_system | error
define_system | exclude
define_system | exclude_atom
define_system | exclude_link
define_system | excludeneu
define_system | gauss
define_system | gdsum
define_system | getrec
define_system | gimax
define_system | gisum
define_system | gstate

c©CCLRC 254

define_system | images
define_system | intlist
define_system | invert
define_system | invert
define_system | jacobi
define_system | lowcase
define_system | lowcase
define_system | lrcmetal
define_system | lrcorrect
define_system | merge
define_system | merge4
define_system | neutbook
define_system | passcon
define_system | passpmf
define_system | passquat
define_system | quatbook
define_system | quatqnch
define_system | quench
define_system | shellsort
define_system | shlqnch
define_system | strip
define_system | vscaleg
define_system | warning
dihed_module | error
dihedral_terms | copystring
dihedral_terms | error
dihedral_terms | gdsum
dihedral_terms | getrec
dihedral_terms | getword
dihedral_terms | gstate
dihedral_terms | images
dihedral_terms | lowcase
dihedral_terms_4pt | copystring
dihedral_terms_4pt | error
dihedral_terms_4pt | gdsum
dihedral_terms_4pt | getrec
dihedral_terms_4pt | getword
dihedral_terms_4pt | gstate
dihedral_terms_4pt | images
dihedral_terms_4pt | lowcase
dihedral_terms_rsq | copystring
dihedral_terms_rsq | error
dihedral_terms_rsq | gdsum
dihedral_terms_rsq | getrec

c©CCLRC 255

dihedral_terms_rsq | getword
dihedral_terms_rsq | gstate
dihedral_terms_rsq | images
dihedral_terms_rsq | lowcase
dlpoly | alloc_ang_arrays
dlpoly | alloc_bnd_arrays
dlpoly | alloc_config_arrays
dlpoly | alloc_csh_arrays
dlpoly | alloc_dih_arrays
dlpoly | alloc_ewald_arrays
dlpoly | alloc_exc_arrays
dlpoly | alloc_fbp_arrays
dlpoly | alloc_fld_arrays
dlpoly | alloc_hke_arrays
dlpoly | alloc_inv_arrays
dlpoly | alloc_met_arrays
dlpoly | alloc_pair_arrays
dlpoly | alloc_pmf_arrays
dlpoly | alloc_prp_arrays
dlpoly | alloc_rgbdy_arrays
dlpoly | alloc_shake_arrays
dlpoly | alloc_site_arrays
dlpoly | alloc_spme_arrays
dlpoly | alloc_tbp_arrays
dlpoly | alloc_ter_arrays
dlpoly | alloc_tet_arrays
dlpoly | alloc_vdw_arrays
dlpoly | angfrc
dlpoly | bndfrc
dlpoly | bomb
dlpoly | corshl
dlpoly | dcell
dlpoly | dihfrc
dlpoly | error
dlpoly | exitcomms
dlpoly | extnfld
dlpoly | fbpfrc
dlpoly | fcap
dlpoly | forces
dlpoly | forcesneu
dlpoly | freeze
dlpoly | gdsum
dlpoly | global_sum_forces
dlpoly | gsync

c©CCLRC 256

dlpoly | initcomms
dlpoly | invfrc
dlpoly | kinstress
dlpoly | lf_integrate
dlpoly | lrcmetal
dlpoly | machine
dlpoly | multiple
dlpoly | multiple_nsq
dlpoly | multipleneu
dlpoly | parlink
dlpoly | parlinkneu
dlpoly | parlst
dlpoly | parlst_nsq
dlpoly | parneulst
dlpoly | parset
dlpoly | quatqnch
dlpoly | relax_shells
dlpoly | result
dlpoly | revive
dlpoly | shlfrc
dlpoly | shlqnch
dlpoly | simdef
dlpoly | static
dlpoly | strucopt
dlpoly | sysbook
dlpoly | sysdef
dlpoly | sysgen
dlpoly | sysinit
dlpoly | systemp
dlpoly | tersoff
dlpoly | tethfrc
dlpoly | thbfrc
dlpoly | timchk
dlpoly | traject
dlpoly | vertest
dlpoly | vscaleg
dlpoly | vv_integrate
dlpoly | xscale
dlpoly | zden0
ensemble_tools | cell_update
ensemble_tools | dcell
ensemble_tools | gdsum
ensemble_tools | getking
ensemble_tools | invert

c©CCLRC 257

ensemble_tools | kinstress
ensemble_tools | kinstressf
ensemble_tools | kinstressg
ensemble_tools | matmul
error | exitcomms
error | gsync
ewald_module | error
ewald_terms | dcell
ewald_terms | error
ewald_terms | gdsum
ewald_terms | invert
ewald_terms_4pt | dcell
ewald_terms_4pt | error
ewald_terms_4pt | gdsum
ewald_terms_4pt | invert
ewald_terms_rsq | dcell
ewald_terms_rsq | error
ewald_terms_rsq | gdsum
ewald_terms_rsq | invert
exclude_module | error
exclude_terms | error
exclude_terms | gimax
exclude_terms | gstate
exclude_terms | warning
external_field_module | error
external_field_terms | copystring
external_field_terms | error
external_field_terms | getrec
external_field_terms | getword
external_field_terms | lowcase
external_field_terms | strip
force_drivers | coul0
force_drivers | coul0neu
force_drivers | coul2
force_drivers | coul2neu
force_drivers | coul3
force_drivers | coul3neu
force_drivers | coul4
force_drivers | erfcgen
force_drivers | error
force_drivers | ewald1
force_drivers | ewald2
force_drivers | ewald3
force_drivers | ewald4

c©CCLRC 258

force_drivers | ewald_spme
force_drivers | gdsum
force_drivers | gimax
force_drivers | gstate
force_drivers | hkewald1
force_drivers | hkewald2
force_drivers | hkewald3
force_drivers | hkewald4
force_drivers | hkgen
force_drivers | images
force_drivers | neutlst
force_drivers | primlst
force_drivers | prneulst
force_drivers | rdf0
force_drivers | rdf0neu
force_drivers | scdens
force_drivers | srfrce
force_drivers | srfrceneu
force_drivers | suttchen
four_body_module | error
four_body_terms | copystring
four_body_terms | dcell
four_body_terms | error
four_body_terms | gdsum
four_body_terms | getrec
four_body_terms | getword
four_body_terms | gstate
four_body_terms | invert
four_body_terms | lowcase
hkewald_module | error
hkewald_terms | dcell
hkewald_terms | error
hkewald_terms | gdsum
hkewald_terms | invert
hkewald_terms | warning
inversion_module | error
inversion_terms | copystring
inversion_terms | error
inversion_terms | gdsum
inversion_terms | getrec
inversion_terms | getword
inversion_terms | gstate
inversion_terms | images
inversion_terms | lowcase

c©CCLRC 259

kinetic_terms | gdsum
lf_integrate | error
lf_integrate | gstate
lf_integrate | npt_b1
lf_integrate | npt_h1
lf_integrate | nptq_b1
lf_integrate | nptq_b2
lf_integrate | nptq_h1
lf_integrate | nptq_h2
lf_integrate | nst_b1
lf_integrate | nst_h1
lf_integrate | nstq_b1
lf_integrate | nstq_b2
lf_integrate | nstq_h1
lf_integrate | nstq_h2
lf_integrate | nve_1
lf_integrate | nveq_1
lf_integrate | nveq_2
lf_integrate | nvt_b1
lf_integrate | nvt_e1
lf_integrate | nvt_h1
lf_integrate | nvtq_b1
lf_integrate | nvtq_b2
lf_integrate | nvtq_h1
lf_integrate | nvtq_h2
lf_integrate | pmflf
lf_motion_1 | cell_propagate
lf_motion_1 | error
lf_motion_1 | error
lf_motion_1 | gdsum
lf_motion_1 | getcom
lf_motion_1 | getvom
lf_motion_1 | gstate
lf_motion_1 | images
lf_motion_1 | kinstress
lf_motion_1 | matmul
lf_motion_1 | merge
lf_motion_1 | rdshake_1
lf_motion_1 | shmove
lf_motion_1 | splice
lf_rotation_1 | bodystress
lf_rotation_1 | cell_propagate
lf_rotation_1 | error
lf_rotation_1 | getcom

c©CCLRC 260

lf_rotation_1 | getrotmat
lf_rotation_1 | getvom
lf_rotation_1 | gimax
lf_rotation_1 | gstate
lf_rotation_1 | images
lf_rotation_1 | kinstressf
lf_rotation_1 | matmul
lf_rotation_1 | merge
lf_rotation_1 | merge1
lf_rotation_1 | rdshake_1
lf_rotation_1 | update_quaternions
lf_rotation_2 | bodystress
lf_rotation_2 | cell_propagate
lf_rotation_2 | error
lf_rotation_2 | gdsum
lf_rotation_2 | getcom
lf_rotation_2 | getrotmat
lf_rotation_2 | getvom
lf_rotation_2 | gimax
lf_rotation_2 | gstate
lf_rotation_2 | images
lf_rotation_2 | kinstressf
lf_rotation_2 | kinstressg
lf_rotation_2 | matmul
lf_rotation_2 | merge
lf_rotation_2 | merge1
lf_rotation_2 | merge4
lf_rotation_2 | qshake
lf_rotation_2 | shmove
lf_rotation_2 | splice
lf_rotation_2 | update_quaternions
merge_hcube | MPI_IRECV
merge_hcube | MPI_SEND
merge_hcube | MPI_WAIT
merge_hcube | error
merge_hcube | gdsum
merge_hcube | gimax
merge_hcube | gstate
merge_hcube | gsync
merge_systol | MPI_IRECV
merge_systol | MPI_SEND
merge_systol | MPI_WAIT
merge_systol | error
merge_systol | gdsum

c©CCLRC 261

merge_systol | gstate
merge_systol | gsync
merge_tools | MPI_IRECV
merge_tools | MPI_SEND
merge_tools | MPI_WAIT
merge_tools | error
merge_tools | gdsum
merge_tools | gstate
merge_tools | gsync
metal_module | error
metal_terms | copystring
metal_terms | denloc
metal_terms | error
metal_terms | gdsum
metal_terms | getrec
metal_terms | getword
metal_terms | images
metal_terms | lowcase
metal_terms | metgen
metal_terms | warning
metal_terms_4pt | copystring
metal_terms_4pt | denloc
metal_terms_4pt | error
metal_terms_4pt | gdsum
metal_terms_4pt | getrec
metal_terms_4pt | getword
metal_terms_4pt | images
metal_terms_4pt | lowcase
metal_terms_4pt | metgen
metal_terms_4pt | warning
metal_terms_rsq | copystring
metal_terms_rsq | denloc
metal_terms_rsq | error
metal_terms_rsq | gdsum
metal_terms_rsq | getrec
metal_terms_rsq | getword
metal_terms_rsq | images
metal_terms_rsq | lowcase
metal_terms_rsq | metgen
metal_terms_rsq | warning
nlist_builders | dcell
nlist_builders | error
nlist_builders | gimax
nlist_builders | gisum

c©CCLRC 262

nlist_builders | gstate
nlist_builders | images
nlist_builders | invert
nlist_builders | merge
nlist_builders | shellsort
pair_module | error
parse_tools | gisum
parse_tools | gstate
parse_tools | gsync
pass_tools | MPI_IRECV
pass_tools | MPI_SEND
pass_tools | MPI_WAIT
pass_tools | error
pass_tools | gisum
pass_tools | gstate
pass_tools | gsync
pmf_lf | error
pmf_lf | gdsum
pmf_lf | images
pmf_lf | kinstress
pmf_lf | merge
pmf_lf | pmf_shake
pmf_lf | pmf_vectors
pmf_lf | rdshake_1
pmf_lf | splice
pmf_module | error
pmf_terms | error
pmf_terms | getrec
pmf_terms | images
pmf_terms | lowcase
pmf_terms | strip
pmf_vv | error
pmf_vv | gdsum
pmf_vv | images
pmf_vv | kinstress
pmf_vv | merge
pmf_vv | pmf_rattle_v
pmf_vv | pmf_vectors
pmf_vv | rdrattle_v
pmf_vv | splice
property_module | error
rigid_body_module | error
rigid_body_terms | error
rigid_body_terms | gdsum

c©CCLRC 263

rigid_body_terms | getrec
serial | error
setup_program | abortscan
setup_program | cfgscan
setup_program | dcell
setup_program | dcell
setup_program | error
setup_program | fldscan
setup_program | gdsum
setup_program | getrec
setup_program | getword
setup_program | lowcase
shake_module | error
shake_terms | copystring
shake_terms | error
shake_terms | getrec
site_module | error
site_terms | copystring
site_terms | error
site_terms | getrec
site_terms | getword
site_terms | warning
spme_module | error
spme_terms | bspcoe
spme_terms | bspgen
spme_terms | cpy_rtc
spme_terms | dcell
spme_terms | dcft3
spme_terms | dlpfft3
spme_terms | ele_prd
spme_terms | error
spme_terms | gdsum
spme_terms | invert
spme_terms | scl_csum
spme_terms | set_block
spme_terms | spl_cexp
spme_terms | spme_for
strucopt | error
strucopt | images
system_properties | dcell
system_properties | diffsn0
system_properties | diffsn1
system_properties | error
system_properties | gdsum

c©CCLRC 264

system_properties | merge
system_properties | rdf1
system_properties | revive
system_properties | timchk
system_properties | zden1
temp_scalers | error
temp_scalers | gdsum
temp_scalers | gstate
temp_scalers | images
temp_scalers | invert
temp_scalers | merge
temp_scalers | merge1
temp_scalers | quatqnch
temp_scalers | shlmerge
temp_scalers | shmove
temp_scalers | splice
tersoff_module | error
tersoff_terms | copystring
tersoff_terms | dcell
tersoff_terms | error
tersoff_terms | gdsum
tersoff_terms | getrec
tersoff_terms | getword
tersoff_terms | gstate
tersoff_terms | invert
tersoff_terms | lowcase
tersoff_terms | tergen
tersoff_terms | terint
tersoff_terms | tersoff3
tether_module | error
tether_terms | copystring
tether_terms | error
tether_terms | gdsum
tether_terms | getrec
tether_terms | getword
tether_terms | gstate
tether_terms | images
tether_terms | lowcase
tether_terms | strip
three_body_module | error
three_body_terms | copystring
three_body_terms | dcell
three_body_terms | error
three_body_terms | gdsum

c©CCLRC 265

three_body_terms | getrec
three_body_terms | getword
three_body_terms | gstate
three_body_terms | invert
three_body_terms | lowcase
timchk | date_and_time
utility_pack | date_and_time
utility_pack | error
utility_pack | exit
utility_pack | gdsum
utility_pack | images
utility_pack | invert
utility_pack | merge
vdw_module | error
vdw_terms | abort_table_read
vdw_terms | copystring
vdw_terms | error
vdw_terms | forgen
vdw_terms | fortab
vdw_terms | gdsum
vdw_terms | getrec
vdw_terms | getword
vdw_terms | lowcase
vdw_terms | warning
vdw_terms_4pt | abort_table_read
vdw_terms_4pt | copystring
vdw_terms_4pt | error
vdw_terms_4pt | forgen
vdw_terms_4pt | fortab
vdw_terms_4pt | gdsum
vdw_terms_4pt | getrec
vdw_terms_4pt | getword
vdw_terms_4pt | lowcase
vdw_terms_4pt | warning
vdw_terms_rsq | abort_table_read
vdw_terms_rsq | copystring
vdw_terms_rsq | error
vdw_terms_rsq | forgen
vdw_terms_rsq | fortab
vdw_terms_rsq | gdsum
vdw_terms_rsq | getrec
vdw_terms_rsq | getword
vdw_terms_rsq | lowcase
vdw_terms_rsq | warning

c©CCLRC 266

vv_integrate | error
vv_integrate | gstate
vv_integrate | nptqvv_b1
vv_integrate | nptqvv_b2
vv_integrate | nptqvv_h1
vv_integrate | nptqvv_h2
vv_integrate | nptvv_b1
vv_integrate | nptvv_h1
vv_integrate | nstqvv_b1
vv_integrate | nstqvv_b2
vv_integrate | nstqvv_h1
vv_integrate | nstqvv_h2
vv_integrate | nstvv_b1
vv_integrate | nstvv_h1
vv_integrate | nveqvv_1
vv_integrate | nveqvv_2
vv_integrate | nvevv_1
vv_integrate | nvtqvv_b1
vv_integrate | nvtqvv_b2
vv_integrate | nvtqvv_h1
vv_integrate | nvtqvv_h2
vv_integrate | nvtvv_b1
vv_integrate | nvtvv_e1
vv_integrate | nvtvv_h1
vv_integrate | pmfvv
vv_motion_1 | dcell
vv_motion_1 | error
vv_motion_1 | gdsum
vv_motion_1 | getcom
vv_motion_1 | getvom
vv_motion_1 | gstate
vv_motion_1 | images
vv_motion_1 | kinstress
vv_motion_1 | matmul
vv_motion_1 | merge
vv_motion_1 | nptscale_p
vv_motion_1 | nptscale_t
vv_motion_1 | nstscale_p
vv_motion_1 | nstscale_t
vv_motion_1 | nvtscale
vv_motion_1 | rdrattle_r
vv_motion_1 | rdrattle_v
vv_motion_1 | shmove
vv_motion_1 | splice

c©CCLRC 267

vv_rotation_1 | bodystress
vv_rotation_1 | dcell
vv_rotation_1 | error
vv_rotation_1 | getcom
vv_rotation_1 | getking
vv_rotation_1 | getrotmat
vv_rotation_1 | getvom
vv_rotation_1 | gimax
vv_rotation_1 | gstate
vv_rotation_1 | images
vv_rotation_1 | kinstressf
vv_rotation_1 | kinstressg
vv_rotation_1 | matmul
vv_rotation_1 | merge
vv_rotation_1 | merge1
vv_rotation_1 | nosquish
vv_rotation_1 | nptqscl_p
vv_rotation_1 | nptqscl_t
vv_rotation_1 | nptqscl_t
vv_rotation_1 | nstqscl_p
vv_rotation_1 | nstqscl_t
vv_rotation_1 | nvtqscl
vv_rotation_1 | rdrattle_r
vv_rotation_1 | rdrattle_v
vv_rotation_2 | bodystress
vv_rotation_2 | dcell
vv_rotation_2 | gdsum
vv_rotation_2 | getcom
vv_rotation_2 | getking
vv_rotation_2 | getrotmat
vv_rotation_2 | getvom
vv_rotation_2 | gimax
vv_rotation_2 | gstate
vv_rotation_2 | images
vv_rotation_2 | kinstressf
vv_rotation_2 | kinstressg
vv_rotation_2 | matmul
vv_rotation_2 | merge
vv_rotation_2 | merge1
vv_rotation_2 | nosquish
vv_rotation_2 | nptqscl_p
vv_rotation_2 | nptqscl_t
vv_rotation_2 | nstqscl_p2
vv_rotation_2 | nstqscl_t2

c©CCLRC 268

vv_rotation_2 | nvtqscl
vv_rotation_2 | pivot
vv_rotation_2 | qrattle_r
vv_rotation_2 | qrattle_v
vv_rotation_2 | rotate_omega
vv_rotation_2 | shmove
vv_rotation_2 | splice

Appendix F

Calling Subroutines

Calling Subroutines

The following table lists the subroutines in DL POLY 2 and where they are called from.

Called routine | Calling routine
abort_config_read | define_system
abort_control_read | define_system
abort_field_read | define_system
abort_table_read | vdw_terms
abort_table_read | vdw_terms_4pt
abort_table_read | vdw_terms_rsq
abortscan | setup_program
alloc_ang_arrays | dlpoly
alloc_bnd_arrays | dlpoly
alloc_config_arrays | dlpoly
alloc_csh_arrays | dlpoly
alloc_dih_arrays | dlpoly
alloc_ewald_arrays | dlpoly
alloc_exc_arrays | dlpoly
alloc_fbp_arrays | dlpoly
alloc_fld_arrays | dlpoly
alloc_hke_arrays | dlpoly
alloc_inv_arrays | dlpoly
alloc_met_arrays | dlpoly
alloc_pair_arrays | dlpoly
alloc_pmf_arrays | dlpoly
alloc_prp_arrays | dlpoly
alloc_rgbdy_arrays | dlpoly
alloc_shake_arrays | dlpoly
alloc_site_arrays | dlpoly
alloc_spme_arrays | dlpoly

269

c©CCLRC 270

alloc_tbp_arrays | dlpoly
alloc_ter_arrays | dlpoly
alloc_tet_arrays | dlpoly
alloc_vdw_arrays | dlpoly
angfrc | dlpoly
bndfrc | dlpoly
bodystress | lf_rotation_1
bodystress | lf_rotation_2
bodystress | vv_rotation_1
bodystress | vv_rotation_2
bomb | dlpoly
bspcoe | spme_terms
bspgen | spme_terms
cell_propagate | lf_motion_1
cell_propagate | lf_rotation_1
cell_propagate | lf_rotation_2
cell_update | ensemble_tools
cfgscan | setup_program
check_shells | define_system
check_syschg | define_system
copystring | angle_terms
copystring | bond_terms
copystring | define_system
copystring | dihedral_terms
copystring | dihedral_terms_4pt
copystring | dihedral_terms_rsq
copystring | external_field_terms
copystring | four_body_terms
copystring | inversion_terms
copystring | metal_terms
copystring | metal_terms_4pt
copystring | metal_terms_rsq
copystring | shake_terms
copystring | site_terms
copystring | tersoff_terms
copystring | tether_terms
copystring | three_body_terms
copystring | vdw_terms
copystring | vdw_terms_4pt
copystring | vdw_terms_rsq
corshl | dlpoly
coul0 | force_drivers
coul0neu | force_drivers
coul2 | force_drivers

c©CCLRC 271

coul2neu | force_drivers
coul3 | force_drivers
coul3neu | force_drivers
coul4 | force_drivers
cpy_rtc | spme_terms
date_and_time | timchk
date_and_time | utility_pack
dcell | define_system
dcell | dlpoly
dcell | ensemble_tools
dcell | ewald_terms
dcell | ewald_terms_4pt
dcell | ewald_terms_rsq
dcell | four_body_terms
dcell | hkewald_terms
dcell | nlist_builders
dcell | setup_program
dcell | setup_program
dcell | spme_terms
dcell | system_properties
dcell | tersoff_terms
dcell | three_body_terms
dcell | vv_motion_1
dcell | vv_rotation_1
dcell | vv_rotation_2
dcft3 | spme_terms
define_angles | define_system
define_atoms | define_system
define_bonds | define_system
define_constraints | define_system
define_core_shell | define_system
define_dihedrals | define_system
define_external_field | define_system
define_four_body | define_system
define_inversions | define_system
define_metals | define_system
define_pmf | define_system
define_rigid_body | define_system
define_tersoff | define_system
define_tethers | define_system
define_three_body | define_system
define_units | define_system
define_van_der_waals | define_system
denloc | metal_terms

c©CCLRC 272

denloc | metal_terms_4pt
denloc | metal_terms_rsq
diffsn0 | system_properties
diffsn1 | system_properties
dihfrc | dlpoly
dlpfft3 | spme_terms
ele_prd | spme_terms
erfcgen | force_drivers
error | angle_terms
error | angles_module
error | bond_terms
error | bonds_module
error | config_module
error | core_shell_module
error | core_shell_terms
error | define_system
error | dihed_module
error | dihedral_terms
error | dihedral_terms_4pt
error | dihedral_terms_rsq
error | dlpoly
error | ewald_module
error | ewald_terms
error | ewald_terms_4pt
error | ewald_terms_rsq
error | exclude_module
error | exclude_terms
error | external_field_module
error | external_field_terms
error | force_drivers
error | four_body_module
error | four_body_terms
error | hkewald_module
error | hkewald_terms
error | inversion_module
error | inversion_terms
error | lf_integrate
error | lf_motion_1
error | lf_motion_1
error | lf_rotation_1
error | lf_rotation_2
error | merge_hcube
error | merge_systol
error | merge_tools

c©CCLRC 273

error | metal_module
error | metal_terms
error | metal_terms_4pt
error | metal_terms_rsq
error | nlist_builders
error | pair_module
error | pass_tools
error | pmf_lf
error | pmf_module
error | pmf_terms
error | pmf_vv
error | property_module
error | rigid_body_module
error | rigid_body_terms
error | serial
error | setup_program
error | shake_module
error | shake_terms
error | site_module
error | site_terms
error | spme_module
error | spme_terms
error | strucopt
error | system_properties
error | temp_scalers
error | tersoff_module
error | tersoff_terms
error | tether_module
error | tether_terms
error | three_body_module
error | three_body_terms
error | utility_pack
error | vdw_module
error | vdw_terms
error | vdw_terms_4pt
error | vdw_terms_rsq
error | vv_integrate
error | vv_motion_1
error | vv_rotation_1
ewald1 | force_drivers
ewald2 | force_drivers
ewald3 | force_drivers
ewald4 | force_drivers
ewald_spme | force_drivers

c©CCLRC 274

exclude | define_system
exclude_atom | define_system
exclude_link | define_system
excludeneu | define_system
exit | basic_comms
exit | utility_pack
exitcomms | dlpoly
exitcomms | error
extnfld | dlpoly
fbpfrc | dlpoly
fcap | dlpoly
fldscan | setup_program
forces | dlpoly
forcesneu | dlpoly
forgen | vdw_terms
forgen | vdw_terms_4pt
forgen | vdw_terms_rsq
fortab | vdw_terms
fortab | vdw_terms_4pt
fortab | vdw_terms_rsq
freeze | dlpoly
gauss | define_system
gdsum | angle_terms
gdsum | bond_terms
gdsum | core_shell_terms
gdsum | define_system
gdsum | dihedral_terms
gdsum | dihedral_terms_4pt
gdsum | dihedral_terms_rsq
gdsum | dlpoly
gdsum | ensemble_tools
gdsum | ewald_terms
gdsum | ewald_terms_4pt
gdsum | ewald_terms_rsq
gdsum | force_drivers
gdsum | four_body_terms
gdsum | hkewald_terms
gdsum | inversion_terms
gdsum | kinetic_terms
gdsum | lf_motion_1
gdsum | lf_rotation_2
gdsum | merge_hcube
gdsum | merge_systol
gdsum | merge_tools

c©CCLRC 275

gdsum | metal_terms
gdsum | metal_terms_4pt
gdsum | metal_terms_rsq
gdsum | pmf_lf
gdsum | pmf_vv
gdsum | rigid_body_terms
gdsum | setup_program
gdsum | spme_terms
gdsum | system_properties
gdsum | temp_scalers
gdsum | tersoff_terms
gdsum | tether_terms
gdsum | three_body_terms
gdsum | utility_pack
gdsum | vdw_terms
gdsum | vdw_terms_4pt
gdsum | vdw_terms_rsq
gdsum | vv_motion_1
gdsum | vv_rotation_2
getcom | lf_motion_1
getcom | lf_rotation_1
getcom | lf_rotation_2
getcom | vv_motion_1
getcom | vv_rotation_1
getcom | vv_rotation_2
getking | ensemble_tools
getking | vv_rotation_1
getking | vv_rotation_2
getrec | angle_terms
getrec | bond_terms
getrec | core_shell_terms
getrec | define_system
getrec | dihedral_terms
getrec | dihedral_terms_4pt
getrec | dihedral_terms_rsq
getrec | external_field_terms
getrec | four_body_terms
getrec | inversion_terms
getrec | metal_terms
getrec | metal_terms_4pt
getrec | metal_terms_rsq
getrec | pmf_terms
getrec | rigid_body_terms
getrec | setup_program

c©CCLRC 276

getrec | shake_terms
getrec | site_terms
getrec | tersoff_terms
getrec | tether_terms
getrec | three_body_terms
getrec | vdw_terms
getrec | vdw_terms_4pt
getrec | vdw_terms_rsq
getrotmat | lf_rotation_1
getrotmat | lf_rotation_2
getrotmat | vv_rotation_1
getrotmat | vv_rotation_2
getvom | lf_motion_1
getvom | lf_rotation_1
getvom | lf_rotation_2
getvom | vv_motion_1
getvom | vv_rotation_1
getvom | vv_rotation_2
getword | angle_terms
getword | bond_terms
getword | dihedral_terms
getword | dihedral_terms_4pt
getword | dihedral_terms_rsq
getword | external_field_terms
getword | four_body_terms
getword | inversion_terms
getword | metal_terms
getword | metal_terms_4pt
getword | metal_terms_rsq
getword | setup_program
getword | site_terms
getword | tersoff_terms
getword | tether_terms
getword | three_body_terms
getword | vdw_terms
getword | vdw_terms_4pt
getword | vdw_terms_rsq
gimax | define_system
gimax | exclude_terms
gimax | force_drivers
gimax | lf_rotation_1
gimax | lf_rotation_2
gimax | merge_hcube
gimax | nlist_builders

c©CCLRC 277

gimax | vv_rotation_1
gimax | vv_rotation_2
gisum | basic_comms
gisum | define_system
gisum | nlist_builders
gisum | parse_tools
gisum | pass_tools
global_sum_forces | dlpoly
gstate | angle_terms
gstate | bond_terms
gstate | define_system
gstate | dihedral_terms
gstate | dihedral_terms_4pt
gstate | dihedral_terms_rsq
gstate | exclude_terms
gstate | force_drivers
gstate | four_body_terms
gstate | inversion_terms
gstate | lf_integrate
gstate | lf_motion_1
gstate | lf_rotation_1
gstate | lf_rotation_2
gstate | merge_hcube
gstate | merge_systol
gstate | merge_tools
gstate | nlist_builders
gstate | parse_tools
gstate | pass_tools
gstate | temp_scalers
gstate | tersoff_terms
gstate | tether_terms
gstate | three_body_terms
gstate | vv_integrate
gstate | vv_motion_1
gstate | vv_rotation_1
gstate | vv_rotation_2
gsync | dlpoly
gsync | error
gsync | merge_hcube
gsync | merge_systol
gsync | merge_tools
gsync | parse_tools
gsync | pass_tools
hkewald1 | force_drivers

c©CCLRC 278

hkewald2 | force_drivers
hkewald3 | force_drivers
hkewald4 | force_drivers
hkgen | force_drivers
images | angle_terms
images | bond_terms
images | core_shell_terms
images | define_system
images | dihedral_terms
images | dihedral_terms_4pt
images | dihedral_terms_rsq
images | force_drivers
images | inversion_terms
images | lf_motion_1
images | lf_rotation_1
images | lf_rotation_2
images | metal_terms
images | metal_terms_4pt
images | metal_terms_rsq
images | nlist_builders
images | pmf_lf
images | pmf_terms
images | pmf_vv
images | strucopt
images | temp_scalers
images | tether_terms
images | utility_pack
images | vv_motion_1
images | vv_rotation_1
images | vv_rotation_2
initcomms | dlpoly
intlist | define_system
invert | define_system
invert | define_system
invert | ensemble_tools
invert | ewald_terms
invert | ewald_terms_4pt
invert | ewald_terms_rsq
invert | four_body_terms
invert | hkewald_terms
invert | nlist_builders
invert | spme_terms
invert | temp_scalers
invert | tersoff_terms

c©CCLRC 279

invert | three_body_terms
invert | utility_pack
invfrc | dlpoly
jacobi | define_system
kinstress | dlpoly
kinstress | ensemble_tools
kinstress | lf_motion_1
kinstress | pmf_lf
kinstress | pmf_vv
kinstress | vv_motion_1
kinstressf | ensemble_tools
kinstressf | lf_rotation_1
kinstressf | lf_rotation_2
kinstressf | vv_rotation_1
kinstressf | vv_rotation_2
kinstressg | ensemble_tools
kinstressg | lf_rotation_2
kinstressg | vv_rotation_1
kinstressg | vv_rotation_2
lf_integrate | dlpoly
lowcase | angle_terms
lowcase | bond_terms
lowcase | define_system
lowcase | define_system
lowcase | dihedral_terms
lowcase | dihedral_terms_4pt
lowcase | dihedral_terms_rsq
lowcase | external_field_terms
lowcase | four_body_terms
lowcase | inversion_terms
lowcase | metal_terms
lowcase | metal_terms_4pt
lowcase | metal_terms_rsq
lowcase | pmf_terms
lowcase | setup_program
lowcase | tersoff_terms
lowcase | tether_terms
lowcase | three_body_terms
lowcase | vdw_terms
lowcase | vdw_terms_4pt
lowcase | vdw_terms_rsq
lrcmetal | define_system
lrcmetal | dlpoly
lrcorrect | define_system

c©CCLRC 280

machine | dlpoly
matmul | ensemble_tools
matmul | lf_motion_1
matmul | lf_rotation_1
matmul | lf_rotation_2
matmul | vv_motion_1
matmul | vv_rotation_1
matmul | vv_rotation_2
merge | core_shell_terms
merge | define_system
merge | lf_motion_1
merge | lf_rotation_1
merge | lf_rotation_2
merge | nlist_builders
merge | pmf_lf
merge | pmf_vv
merge | system_properties
merge | temp_scalers
merge | utility_pack
merge | vv_motion_1
merge | vv_rotation_1
merge | vv_rotation_2
merge1 | lf_rotation_1
merge1 | lf_rotation_2
merge1 | temp_scalers
merge1 | vv_rotation_1
merge1 | vv_rotation_2
merge4 | define_system
merge4 | lf_rotation_2
metgen | metal_terms
metgen | metal_terms_4pt
metgen | metal_terms_rsq
MPI_BARRIER | basic_comms
MPI_COMM_RANK | basic_comms
MPI_COMM_SIZE | basic_comms
MPI_FINALIZE | basic_comms
MPI_IRECV | merge_hcube
MPI_IRECV | merge_systol
MPI_IRECV | merge_tools
MPI_IRECV | pass_tools
MPI_RECV | basic_comms
MPI_SEND | merge_hcube
MPI_SEND | merge_systol
MPI_SEND | merge_tools

c©CCLRC 281

MPI_SEND | pass_tools
MPI_WAIT | merge_hcube
MPI_WAIT | merge_systol
MPI_WAIT | merge_tools
MPI_WAIT | pass_tools
MPI_allreduce | basic_comms
MPI_init | basic_comms
MPI_send | basic_comms
multiple | dlpoly
multiple_nsq | dlpoly
multipleneu | dlpoly
neutbook | define_system
neutlst | force_drivers
nosquish | vv_rotation_1
nosquish | vv_rotation_2
npt_b1 | lf_integrate
npt_h1 | lf_integrate
nptq_b1 | lf_integrate
nptq_b2 | lf_integrate
nptq_h1 | lf_integrate
nptq_h2 | lf_integrate
nptqscl_p | vv_rotation_1
nptqscl_p | vv_rotation_2
nptqscl_t | vv_rotation_1
nptqscl_t | vv_rotation_1
nptqscl_t | vv_rotation_2
nptqvv_b1 | vv_integrate
nptqvv_b2 | vv_integrate
nptqvv_h1 | vv_integrate
nptqvv_h2 | vv_integrate
nptscale_p | vv_motion_1
nptscale_t | vv_motion_1
nptvv_b1 | vv_integrate
nptvv_h1 | vv_integrate
nst_b1 | lf_integrate
nst_h1 | lf_integrate
nstq_b1 | lf_integrate
nstq_b2 | lf_integrate
nstq_h1 | lf_integrate
nstq_h2 | lf_integrate
nstqscl_p | vv_rotation_1
nstqscl_p2 | vv_rotation_2
nstqscl_t | vv_rotation_1
nstqscl_t2 | vv_rotation_2

c©CCLRC 282

nstqvv_b1 | vv_integrate
nstqvv_b2 | vv_integrate
nstqvv_h1 | vv_integrate
nstqvv_h2 | vv_integrate
nstscale_p | vv_motion_1
nstscale_t | vv_motion_1
nstvv_b1 | vv_integrate
nstvv_h1 | vv_integrate
nve_1 | lf_integrate
nveq_1 | lf_integrate
nveq_2 | lf_integrate
nveqvv_1 | vv_integrate
nveqvv_2 | vv_integrate
nvevv_1 | vv_integrate
nvt_b1 | lf_integrate
nvt_e1 | lf_integrate
nvt_h1 | lf_integrate
nvtq_b1 | lf_integrate
nvtq_b2 | lf_integrate
nvtq_h1 | lf_integrate
nvtq_h2 | lf_integrate
nvtqscl | vv_rotation_1
nvtqscl | vv_rotation_2
nvtqvv_b1 | vv_integrate
nvtqvv_b2 | vv_integrate
nvtqvv_h1 | vv_integrate
nvtqvv_h2 | vv_integrate
nvtscale | vv_motion_1
nvtvv_b1 | vv_integrate
nvtvv_e1 | vv_integrate
nvtvv_h1 | vv_integrate
parlink | dlpoly
parlinkneu | dlpoly
parlst | dlpoly
parlst_nsq | dlpoly
parneulst | dlpoly
parset | dlpoly
passcon | define_system
passpmf | define_system
passquat | define_system
pivot | vv_rotation_2
pmf_rattle_v | pmf_vv
pmf_shake | pmf_lf
pmf_vectors | pmf_lf

c©CCLRC 283

pmf_vectors | pmf_vv
pmflf | lf_integrate
pmfvv | vv_integrate
primlst | force_drivers
prneulst | force_drivers
qrattle_r | vv_rotation_2
qrattle_v | vv_rotation_2
qshake | lf_rotation_2
quatbook | define_system
quatqnch | define_system
quatqnch | dlpoly
quatqnch | temp_scalers
quench | define_system
rdf0 | force_drivers
rdf0neu | force_drivers
rdf1 | system_properties
rdrattle_r | vv_motion_1
rdrattle_r | vv_rotation_1
rdrattle_v | pmf_vv
rdrattle_v | vv_motion_1
rdrattle_v | vv_rotation_1
rdshake_1 | lf_motion_1
rdshake_1 | lf_rotation_1
rdshake_1 | pmf_lf
relax_shells | dlpoly
result | dlpoly
revive | dlpoly
revive | system_properties
rotate_omega | vv_rotation_2
scdens | force_drivers
scl_csum | spme_terms
set_block | spme_terms
shellsort | define_system
shellsort | nlist_builders
shlfrc | dlpoly
shlmerge | temp_scalers
shlqnch | define_system
shlqnch | dlpoly
shmove | lf_motion_1
shmove | lf_rotation_2
shmove | temp_scalers
shmove | vv_motion_1
shmove | vv_rotation_2
simdef | dlpoly

c©CCLRC 284

spl_cexp | spme_terms
splice | lf_motion_1
splice | lf_rotation_2
splice | pmf_lf
splice | pmf_vv
splice | temp_scalers
splice | vv_motion_1
splice | vv_rotation_2
spme_for | spme_terms
srfrce | force_drivers
srfrceneu | force_drivers
static | dlpoly
strip | define_system
strip | external_field_terms
strip | pmf_terms
strip | tether_terms
strucopt | dlpoly
suttchen | force_drivers
sysbook | dlpoly
sysdef | dlpoly
sysgen | dlpoly
sysinit | dlpoly
systemp | dlpoly
tergen | tersoff_terms
terint | tersoff_terms
tersoff | dlpoly
tersoff3 | tersoff_terms
tethfrc | dlpoly
thbfrc | dlpoly
timchk | dlpoly
timchk | system_properties
traject | dlpoly
update_quaternions | lf_rotation_1
update_quaternions | lf_rotation_2
vertest | dlpoly
vscaleg | define_system
vscaleg | dlpoly
vv_integrate | dlpoly
warning | define_system
warning | exclude_terms
warning | hkewald_terms
warning | metal_terms
warning | metal_terms_4pt
warning | metal_terms_rsq

c©CCLRC 285

warning | site_terms
warning | vdw_terms
warning | vdw_terms_4pt
warning | vdw_terms_rsq
xscale | dlpoly
zden0 | dlpoly
zden1 | system_properties

Index

algorithm, 5, 6, 54, 106
Brode-Ahlrichs, 18, 79–81
FIQA, 5, 55, 71
multiple timestep, 76–78, 80, 89, 109,

111, 143, 150, 194, 200–202, 204
NOSQUISH, 5, 56, 71, 72
QSHAKE, 6, 55, 56, 74, 76, 84
RATTLE, 5, 56, 59, 83
RD-SHAKE, 190, 195
SHAKE, 5, 55, 79, 83, 84, 206
velocity Verlet, 5, 54, 56, 59
Verlet, 17, 18, 33, 42, 54, 57, 58, 61, 63,

65, 83
Verlet leapfrog, 5, 54, 55, 57

AMBER, 4, 16, 97, 98
angular momentum, 71
angular restraints, 23
angular velocity, 71

barostat, 6, 73, 108, 211
Berendsen, 68, 76, 151
Hoover, 64

boundary conditions, 5, 41, 89, 97, 150, 151,
167, 184, 186

cubic, 116, 184, 186, 196
hexagonal prism, 116
parallelpiped, 184, 186, 196
rhombic dodecahedron, 116
slab, 196
truncated octahedron, 116

CCP5, 3, 10, 11
charge groups, 119, 151, 189, 195
constraints

bond, 4, 5, 18, 57–59, 68, 69, 72, 74, 83,
84, 88, 89, 121, 142, 150, 151, 180,
185, 189, 190, 205

Gaussian, 45, 60, 150
PMF, 59, 122

CVS, 6, 7

direct Coulomb sum, 41, 42, 44
distance dependant dielectric, 44, 51, 107,

113, 205
distance restraints, 20
DLPROTEIN, 97

ensemble, 6, 203, 205
Berendsen NσT, 6, 55, 56, 108, 110, 112
Berendsen NPT, 6, 55, 56, 110, 112
Berendsen NVT, 6, 55, 56, 107, 108, 110,

112
canonical, 60
Evans NVT, 6, 55, 56, 108, 110, 112
Hoover NσT, 6, 55, 56, 110
Hoover NPT, 6, 55, 56, 108, 110
Hoover NVT, 6, 55, 56, 110
microcanonical, see ensemble,NVE
NVE, 60, 107, 110, 112

equations of motion
Euler, 71
rigid body, 70

error messages, 102, 173, 242
Ewald

Hautman Klein, 41, 49, 100, 108, 171
optimisation, 98–100
SPME, 7, 41, 47, 82, 98, 109, 151
summation, 41, 45–47, 77, 78, 81, 99,

100, 108, 110, 150, 151, 194, 196,
198, 206

force field, 4, 16, 18, 26, 40, 98, 175, 190
AMBER, 4, 16
DL POLY, 4, 16–53

286

c©CCLRC 287

Dreiding, 4, 16, 34, 151, 152
GROMOS, 4, 16
OPLS, 16

FORTRAN 90, 6–8
FTP, 10, 12

Graphical User Interface, 10, 96, 98, 115
GROMOS, 4, 16

Hautman Klein Ewald, see Ewald, Hautman
Klein

Java GUI, 5, 10

licence, 3
long range corrections

Sutton-Chen, 39
van der Waals, 33

minimisation
conjugate gradients, 54

parallelisation, 5, 78
Ewald summation, 82
intramolecular terms, 79
Replicated Data, 5
Verlet neighbour list, 81

polarisation, 52, 53, 151, 152
dynamical shell model, 53, 54, 188, 189
relaxed shell model, 54

potential
bond, 4, 17–20, 25, 26, 30, 34, 53, 79, 83,

97, 122, 142, 178, 207
Coulombic, see potential,electrostatic
dihedral, 4, 16, 17, 24–28, 79, 125, 142,

183, 208
electrostatic, 4, 8, 17, 20, 23, 41, 76,

77, 107–109, 113, 142, 150, 151, 200,
205

Finnis-Sinclair, see potential,metal
four-body, 4, 16–18, 31, 37, 38, 82, 130,

131, 142, 177, 186–188, 190, 207,
209

improper dihedral, 4, 26, 79
intramolecular, 31, 38, 89

inversion, 4, 16, 27–29, 37, 38, 127, 185,
208

metal, 4, 17, 38, 131, 185, 193
nonbonded, 4, 17, 18, 80, 82, 94, 97, 98,

109, 118, 122, 124, 128, 176
Sutton-Chen, see potential,metal, see po-

tential,metal
tabulated, 136, 177, 178
Tersoff, 16, 17, 35, 37, 132, 133, 152, 187,

188, 235
tethered, 30, 31, 126, 142, 151, 183, 208
three-body, 4, 16–18, 21, 31, 34, 82, 97,

128, 130, 142, 177, 184, 186, 187,
209

valence angle, 4, 16–18, 21, 22, 28, 34,
79, 82, 88, 97, 123, 124, 142, 181

van der Waals, 17, 20, 23, 77, 89, 94,
111, 125, 202, 203

quaternions, 5, 55, 71, 109

reaction field, 51, 52, 109
rigid body, 3–6, 31, 55–57, 69, 70, 72–74, 84,

88, 150, 151, 188, 196–199, 205, 210,
215

rigid bond, see constraints,bond
rigid molecule, see rigid body

SPME, see Ewald,SPME, see Ewald,SPME
stress tensor, 58
stress tensor, 23, 26, 29–31, 33, 34, 37–39,

42–44, 46, 52, 53, 58, 64, 206
sub-directory, 156–158

bench, 9
build, 9
data, 9
execute, 9, 174
java, 9
public, 9
source, 9
utility, 9

thermostat, 6, 40, 73, 77, 108, 205, 211
Berendsen, 68, 73, 76, 150, 151
Nosé-Hoover, 64, 65, 73, 76, 89, 150

c©CCLRC 288

units
DL POLY, 8, 143
energy, 119
pressure, 8, 64, 109, 143

Verlet neighbour list, 47, 76, 77, 80–82, 88,
89, 111, 191

WWW, 3, 11, 12

	Title Page
	About DL_POLY_2
	Disclaimer
	Acknowledgements
	Manual Notation

	Contents
	List of Tables
	List of Figures
	Introduction
	The DL_POLY Package
	Functionality
	Molecular Systems
	The DL_POLY_2 Force Field
	Boundary Conditions
	The Java Graphical User Interface
	Algorithms

	Programming Style
	Programming Language
	Memory Management
	Target Computers
	Version Control System (CVS)
	Required Program Libraries
	Internal Documentation
	Subroutine/Function Calling Sequences
	FORTRAN Parameters
	Arithmetic Precision
	Units
	Error Messages

	The DL_POLY_2 Directory Structure
	The srcf90 Sub-directory
	The utility Sub-directory
	The data Sub-directory
	The bench Sub-directory
	The execute Sub-directory
	The build Sub-directory
	The public Sub-directory
	The java Sub-directory

	Obtaining the Source Code
	Other Information

	DL_POLY_2 Force Fields and Algorithms
	The DL_POLY_2 Force Field
	The Intramolecular Potential Functions
	Bond Potentials
	Distance Restraints
	Valence Angle Potentials
	Angular Restraints
	Dihedral Angle Potentials
	Improper Dihedral Angle Potentials
	Inversion Angle Potentials
	Tethering Forces
	Frozen Atoms

	The Intermolecular Potential Functions
	Short Ranged (van der Waals) Potentials
	Three Body Potentials
	The Tersoff Covalent Potential
	Four Body Potentials
	Metal Potentials
	External Fields

	Long Ranged Electrostatic (Coulombic) Potentials
	Atomistic and Charge Group Implementation
	Direct Coulomb Sum
	Truncated and Shifted Coulomb Sum
	Coulomb Sum with Distance Dependent Dielectric
	Ewald Sum
	Smoothed Particle Mesh Ewald
	Hautman Klein Ewald (HKE)
	Reaction Field
	Dynamical Shell Model
	Relaxed Shell Model

	Integration algorithms
	The Verlet Algorithms
	Bond Constraints
	Potential of Mean Force (PMF) Constraints and the Evaluation of Free Energy
	Thermostats
	Gaussian Constraints
	Barostats
	Rigid Bodies and Rotational Integration Algorithms
	The DL_POLY_2 Multiple Timestep Algorithm

	DL_POLY Parallelisation
	The Replicated Data Strategy
	Distributing the Intramolecular Bonded Terms
	Distributing the Nonbonded Terms
	Modifications for the Ewald Sum
	Modifications for SPME
	Three and Four Body Forces
	Metal Potentials
	Summing the Atomic Forces
	The SHAKE, RATTLE and Parallel QSHAKE Algorithms

	DL_POLY_2 Construction and Execution
	Constructing DL_POLY_2 : an Overview
	Constructing the Standard Version
	Constructing Nonstandard Versions

	Compiling and Running DL_POLY_2
	Compiling the Source Code
	Running DL_POLY_2
	Restarting DL_POLY_2

	A Guide to Preparing Input Files
	Inorganic Materials
	Macromolecules
	Adding Solvent to a Structure
	Analysing Results
	Choosing Ewald Sum Variables

	DL_POLY_2 Error Processing
	The DL_POLY_2 Internal Error Facility

	DL_POLY_2 Data Files
	The INPUT files
	The CONTROL File
	The CONFIG File
	The FIELD File
	The REVOLD File
	The TABLE File

	The OUTPUT Files
	The HISTORY File
	The OUTPUT File
	The REVCON File
	The REVIVE File
	The RDFDAT File
	The ZDNDAT File
	The STATIS File

	DL_POLY_2 Examples
	DL_POLY Examples
	Test Cases
	Benchmark Cases

	DL_POLY_2 Utilities
	Miscellaneous Utilities
	Useful Macros

	Bibliography
	Appendices
	The DL_POLY_2 Makefile
	Periodic Boundary Conditions in DL_POLY
	DL_POLY Error Messages and User Action
	Subroutine Locations
	Called Subroutines
	Calling Subroutines
	Index

