SPIE2007 Smart Materials and Structures EAPAD, Modeling [6524-41]

On a distributed parameter model for electrical impedance of ionic polymer

2007/3/21

K.Takagi^{1,2}, Y.Nakabo^{3,2}, Z.-W.Luo^{4,2}, K.Asaka^{3,2}

1 Nagoya University2 RIKEN (BMC Research Center)

3 AIST

4 Kobe University

Contents

- Introduction
 - Electrical impedance of IPMC*
 - Distributed parameter system: from the point of view of frequency response
- Models
 - Distributed circuit models
- Experiment
 - Cation species / electrode clamp
 - Parameter identification
- Conclusion

*Ionic Polymer-Metal Composite, IPMC

Introduction

Motivation

Robotic applications: a rotary actuator and a snake-like robot

IPMC requires a few volts, however it requires hundreds of milliamperes maximum. Questions :

- ·Why so capacitive? (→physical modeling)
- ·Can we drive the IPMC more efficiently? (\rightarrow designing the driver)
- ·Can we measure the sensor signal precisely? (\rightarrow designing the instrument)

Modeling of the electrical impedance is important!

Introduction

• Electrical impedance (step response)

Introduction

• Electrical impedance (frequency response)

$$i_a(s)$$
 $Z_p(s)$ $v_a(s)$

Distributed parameter system modeling of the impedance and parameter identification from the point of view of frequency response

Models

- Physics based model
 - Transport theory
 - Farinholt and Leo, Proc. SPIE (2005)
- Circuit models
 - (Discrete) RC circuit models
 - Kanno, Tadokoro et al., Trans. JSME C (1996)
 - Newbury and Leo, J.Intell.Mater.Stuct. (2003)
 - (Continuous) RC circuit (transmission line) model
 - Bao, Bar-Cohen, Lih, Proc.SPIE (2002)

Models

• A distributed circuit model (for rough electrode)

Length parameter L[m]Voltage and current at x=0 are V_a and I_a , respectively.

 R_{ss} : Electrode resistance R_{s} : Polymer resistance C_{d} : Electric double layer capacitance

100 μm

Uniformly distributed case

$$Z_{p}(s) = 2\sqrt{\frac{R_{ss}(R_{s}C_{d}s+1)}{C_{d}s}} \frac{1}{\tanh(L\sqrt{R_{ss}C_{d}s}/(R_{s}C_{d}s+1))}$$

Non-uniformly distributed (parameter varying) case \rightarrow difficult to solve...

Models

• A black-box distributed circuit model

K.Asaka et al.: State of Water and Ionic Conductivity of Solid Polymer Electrolyte Membranes in Relation to Polymer Actuators, J. Electroanal. Chem., 505, 24/32 (2001)

 $Z_d(s)$ represents distributed properties of the DPS, not Warburg impedance.

$$Z(s) = \frac{1}{C_d s + \sqrt{s} / K_z} + R_m$$

$$-\pi/2 < \arg(Z(j\omega)) < 0$$

$$\omega << \frac{1}{(K_z C_d)^2}, \quad Z(j\omega) \approx \frac{K_z}{\sqrt{j\omega}}$$

$$\omega >> \frac{1}{R_m C_d}, \quad Z(j\omega) \approx R_m$$
¹¹

• Method: parameter identification

Frequency domain least squares method

$$\hat{p} = \arg \min_{p} \sum_{k} |W(j\omega_{k})(Z(j\omega_{k};p) - z_{k})|^{2}$$
where *p* is a parameter vector $p \coloneqq [C_{d}, R_{m}, K_{z}]$

$$Z(s) = \frac{1}{C_{d}s + \sqrt{s}/K_{z}} + R_{m}$$

The cost function is minimized by the numerical optimization technique (using MATLAB Optimization Toolbox)

• Method: impedance measurement

45[mm]x5[mm] Nafion N-117 (5 times gold plated) Impedance measurement using an impedance analyzer (va=0.3V)

Discussion

For Au-plated Nafion, • The impedance varies by ion species. • The impedance does not vary by clamp method?

The counter ion species affect the impedance.

Surface electrode resistance is small? \rightarrow The resistance is for the polymer-metal interface?

Experimental data Identified model

Experimental data Identified model

Results

$$Z(s) = \frac{1}{C_d s + \sqrt{s} / K_z} + R_m$$

1

In the case of the larger ion (TEA>Na), • Membrane resistance R_m increases • Capacitance C_d decreases • Parameter $1/K_z$ increases (the distributed system property increases)

Conclusion

- Electrical impedance measurement
 - Clamp conditions
 - Counter ion species
- Distributed circuit models
 - An uniformly distributed case
 - A black-box model
- Future works
 - Non-uniformly distributed case
 - Physics based modeling
 - Applications utilizing the model

Thank you for your attentions!