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1. Wedge shaped trough. Since the depth as a function of position is h(x) = ho(1 —z/a)

the basic equation to be solved becomes

e (1))

Solution to the ODE. As you are looking for the normal modes use dh = H(x) exp(—iwt)

and to sanitize the resulting equation 2z = x/a, ¢2 = ghg, T = cot/a and Q = wa/cy. Find
(1—-2)H —H +Q*H =0, (2)

where ' = d/dz. Make the change of variable ¢ = 1 — z then,

1" ]_ / QQ
H +-H +-—H=0. 3
c c (3)
where now ' = d/d¢. This equation has solution as a Bessel function (e.g., Boas 12.16.1)
H = AJy(29(?). (4)

Modes. At the edge of the trough z =1 and ¢ = 0. At the trough center z =0 and ( = 1.

There are two types of modes,

1. spatially odd modes with a node at ¢ = 1 (trough center), i.e., modes for which 22 is

a zero of the Jy Bessel function, €, = z(()”) /2.

2. spatially even modes around the trough center. For these modes you need
dJo(2Q¢2) /d¢ o J1(2¢2)=0, i.c., modes for which 2Q is a zero of the .J; Bessel

function, €, = 2\ /2.

The zeros of the Bessel functions are tabulated. The results are shown in Figs. 1 and 2,
note the values of €2 in the caption. These frequencies are sensibly related to the time for a

disturbance with velocity ¢y to cross the distance 2a. Recall w = Qcy/a.

2. Interface of 2 fluids. Solve Laplaces equation in the two spaces;
space 1: —hy < 2 < 0, ¢1 = A coshk(hy + z) coskx coswt,
space 2: 0 < z < hg, ¢g = B coshk(hy — z) coskx coswt.

At the interface in space 1 the Bernoulli equation is

O, 1
— — P, =0.
ot +9¢ + P 1 =10 (5)

1



Q = 1.916 Q = 3.508

“ .
05| % s 05 e

Q = 5.087 Q =65
1 1
0.5 |, J 0.5
T 7, Fat " .
N, A N,
0 % $ S 0 !.- ~.‘.
'\/' o ~ L
- - * L ]
~05 -0.5
-1 -0.5 0 0.5 1 - -0.5 0 0.5 1
xla xla

FIG. 1: Spatially even modes.

At the interface in space 2 the Bernoulli equation is

O 1

But the pressure must be continuous (in the absence of something at the interface that can

exert force). Thus P, = P, and

0 0
g(p1 — p2)¢ = ngf — m;tl- (7)

At the interface we also have C = v1, = Vg,. From the expressions above for ¢1, ¢o this means

A sinhkhy = —B sinhkhy. Taking the time derivative of Eq. (7) and using ( = 9¢1/9z
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FIG. 2: Spatially odd modes.

leads to

( . )% _ 62¢2 . a2¢1
I\PL=P2) g = P2 T Pl

Substitute and find
2 gk(p1 — p2)
p1 cothkhy 4 ps cothkhs

In the limit kh; < 1 and khy < 1 this reduces to

2 gk:2(p1 — p2)hihs
u_) =
p1ha + pahy

(10)



For py — 0 this goes over to the shallow water wave result

w? = gh k2. (11)

3. Fourier transform. For S(t) the Fourier transform is
+o0 .
S(w) = / dt S(t)e . (12)
For the case at hand the function S depends on ¢ —ty. So shift the origin of the ¢ integration
to tg. This produces the factor exp — wty. The remaining integrals can be brought to the

form

“+00
I = / dy e~ +2AT (13)

where A is a collection of constants. This integral is done by completing the square in the
argument of the exponential
A2 +oo 7( 7A)2 A2
Ig=e / dov e =" = /™, (14)
where the Gaussian integral is done by shifting the origin to A. Find
S(w) = eiwtoi' (efé(At)2(w+Q)2 _ e,%(At)%er) ' (15)
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4. Dispersion. See the MATLAB listing dispersion in a separate pdf file. The result is

shown in Fig. 3.
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FIG. 3: The dispersing pulse has returned to the origin where it is compared to its initial form,

the compact gaussian, heavy line.



