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1. Wedge shaped trough. Since the depth as a function of position is h(x) = h0(1−x/a)

the basic equation to be solved becomes

δḧ =
∂

∂x

[
gh0

(
1− x

a

)
∂δh

∂x

]
. (1)

Solution to the ODE. As you are looking for the normal modes use δh = H(x) exp(−iωt)

and to sanitize the resulting equation z = x/a, c2
0 = gh0, τ = c0t/a and Ω = ωa/c0. Find

(1− z)H
′′ −H

′
+ Ω2H = 0, (2)

where
′
= d/dz. Make the change of variable ζ = 1− z then,

H
′′

+
1

ζ
H

′
+

Ω2

ζ
H = 0. (3)

where now
′
= d/dζ. This equation has solution as a Bessel function (e.g., Boas 12.16.1)

H = AJ0(2Ωζ
1
2 ). (4)

Modes. At the edge of the trough z = 1 and ζ = 0. At the trough center z = 0 and ζ = 1.

There are two types of modes,

1. spatially odd modes with a node at ζ = 1 (trough center), i.e., modes for which 2Ω is

a zero of the J0 Bessel function, Ωn = z
(n)
0 /2.

2. spatially even modes around the trough center. For these modes you need

dJ0(2Ωζ
1
2 )/dζ ∝ J1(2Ωζ

1
2 )=0, i.e., modes for which 2Ω is a zero of the J1 Bessel

function, Ωn = z
(n)
1 /2.

The zeros of the Bessel functions are tabulated. The results are shown in Figs. 1 and 2,

note the values of Ω in the caption. These frequencies are sensibly related to the time for a

disturbance with velocity c0 to cross the distance 2a. Recall ω = Ωc0/a.

2. Interface of 2 fluids. Solve Laplaces equation in the two spaces;

space 1: −h1 < z < 0, φ1 = A coshk(h1 + z) coskx cosωt,

space 2: 0 < z < h2, φ2 = B coshk(h2 − z) coskx cosωt.

At the interface in space 1 the Bernoulli equation is

∂φ1

∂t
+ gζ +

1

ρ1

P1 = 0. (5)
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FIG. 1: Spatially even modes.

At the interface in space 2 the Bernoulli equation is

∂φ2

∂t
+ gζ +

1

ρ2

P2 = 0. (6)

But the pressure must be continuous (in the absence of something at the interface that can

exert force). Thus P1 = P2 and

g(ρ1 − ρ2)ζ = ρ2
∂φ2

∂t
− ρ1

∂φ1

∂t
. (7)

At the interface we also have ζ̇ = v1z = v2z. From the expressions above for φ1, φ2 this means

A sinhkh1 = −B sinhkh2. Taking the time derivative of Eq. (7) and using ζ̇ = ∂φ1/∂z
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FIG. 2: Spatially odd modes.

leads to

g(ρ1 − ρ2)
∂φ1

∂z
= ρ2

∂2φ2

∂t2
− ρ1

∂2φ1

∂t2
. (8)

Substitute and find

ω2 =
gk(ρ1 − ρ2)

ρ1 cothkh1 + ρ2 cothkh2

(9)

In the limit kh1 � 1 and kh2 � 1 this reduces to

ω2 =
gk2(ρ1 − ρ2)h1h2

ρ1h2 + ρ2h1

(10)
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For ρ2 → 0 this goes over to the shallow water wave result

ω2 = gh1k
2. (11)

3. Fourier transform. For S(t) the Fourier transform is

S(ω) =
∫ +∞

−∞
dt S(t)eiωt. (12)

For the case at hand the function S depends on t− t0. So shift the origin of the t integration

to t0. This produces the factor exp − ωt0. The remaining integrals can be brought to the

form

IG =
∫ +∞

−∞
dx e−x2+2Ax, (13)

where A is a collection of constants. This integral is done by completing the square in the

argument of the exponential

IG = eA2
∫ +∞

−∞
dx e−(x−A)2 =

√
π eA2

, (14)

where the Gaussian integral is done by shifting the origin to A. Find

S(ω) = eiωt0
1

2i

(
e−

1
2
(∆t)2(ω+Ω)2 − e−

1
2
(∆t)2(ω−Ω)2

)
. (15)

4. Dispersion. See the MATLAB listing dispersion in a separate pdf file. The result is

shown in Fig. 3.
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FIG. 3: The dispersing pulse has returned to the origin where it is compared to its initial form,

the compact gaussian, heavy line.
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