P740.HW5.sol.tex

1. Wedge shaped trough. Since the depth as a function of position is $h(x)=h_{0}(1-x / a)$ the basic equation to be solved becomes

$$
\begin{equation*}
\delta \ddot{h}=\frac{\partial}{\partial x}\left[g h_{0}\left(1-\frac{x}{a}\right) \frac{\partial \delta h}{\partial x}\right] . \tag{1}
\end{equation*}
$$

Solution to the ODE. As you are looking for the normal modes use $\delta h=H(x) \exp (-i \omega t)$ and to sanitize the resulting equation $z=x / a, c_{0}^{2}=g h_{0}, \tau=c_{0} t / a$ and $\Omega=\omega a / c_{0}$. Find

$$
\begin{equation*}
(1-z) H^{\prime \prime}-H^{\prime}+\Omega^{2} H=0 \tag{2}
\end{equation*}
$$

where ${ }^{\prime}=d / d z$. Make the change of variable $\zeta=1-z$ then,

$$
\begin{equation*}
H^{\prime \prime}+\frac{1}{\zeta} H^{\prime}+\frac{\Omega^{2}}{\zeta} H=0 \tag{3}
\end{equation*}
$$

where now $^{\prime}=d / d \zeta$. This equation has solution as a Bessel function (e.g., Boas 12.16.1)

$$
\begin{equation*}
H=A J_{0}\left(2 \Omega \zeta^{\frac{1}{2}}\right) \tag{4}
\end{equation*}
$$

Modes. At the edge of the trough $z=1$ and $\zeta=0$. At the trough center $z=0$ and $\zeta=1$. There are two types of modes,

1. spatially odd modes with a node at $\zeta=1$ (trough center), i.e., modes for which 2Ω is a zero of the J_{0} Bessel function, $\Omega_{n}=z_{0}^{(n)} / 2$.
2. spatially even modes around the trough center. For these modes you need $d J_{0}\left(2 \Omega \zeta^{\frac{1}{2}}\right) / d \zeta \propto J_{1}\left(2 \Omega \zeta^{\frac{1}{2}}\right)=0$, i.e., modes for which 2Ω is a zero of the J_{1} Bessel function, $\Omega_{n}=z_{1}^{(n)} / 2$.

The zeros of the Bessel functions are tabulated. The results are shown in Figs. 1 and 2, note the values of Ω in the caption. These frequencies are sensibly related to the time for a disturbance with velocity c_{0} to cross the distance $2 a$. Recall $\omega=\Omega c_{0} / a$.
2. Interface of 2 fluids. Solve Laplaces equation in the two spaces;
space 1: $-h_{1}<z<0, \phi_{1}=A \cosh k\left(h_{1}+z\right) \operatorname{coskx} \cos \omega t$,
space 2: $0<z<h_{2}, \phi_{2}=B \operatorname{coshk}\left(h_{2}-z\right) \operatorname{coskx} \cos \omega t$.
At the interface in space 1 the Bernoulli equation is

$$
\begin{equation*}
\frac{\partial \phi_{1}}{\partial t}+g \zeta+\frac{1}{\rho_{1}} P_{1}=0 \tag{5}
\end{equation*}
$$

FIG. 1: Spatially even modes.
At the interface in space 2 the Bernoulli equation is

$$
\begin{equation*}
\frac{\partial \phi_{2}}{\partial t}+g \zeta+\frac{1}{\rho_{2}} P_{2}=0 \tag{6}
\end{equation*}
$$

But the pressure must be continuous (in the absence of something at the interface that can exert force). Thus $P_{1}=P_{2}$ and

$$
\begin{equation*}
g\left(\rho_{1}-\rho_{2}\right) \zeta=\rho_{2} \frac{\partial \phi_{2}}{\partial t}-\rho_{1} \frac{\partial \phi_{1}}{\partial t} \tag{7}
\end{equation*}
$$

At the interface we also have $\dot{\zeta}=v_{1 z}=v_{2 z}$. From the expressions above for ϕ_{1}, ϕ_{2} this means $A \sinh k h_{1}=-B \sinh k h_{2}$. Taking the time derivative of Eq. (7) and using $\dot{\zeta}=\partial \phi_{1} / \partial z$

FIG. 2: Spatially odd modes.
leads to

$$
\begin{equation*}
g\left(\rho_{1}-\rho_{2}\right) \frac{\partial \phi_{1}}{\partial z}=\rho_{2} \frac{\partial^{2} \phi_{2}}{\partial t^{2}}-\rho_{1} \frac{\partial^{2} \phi_{1}}{\partial t^{2}} \tag{8}
\end{equation*}
$$

Substitute and find

$$
\begin{equation*}
\omega^{2}=\frac{g k\left(\rho_{1}-\rho_{2}\right)}{\rho_{1} \operatorname{coth} k h_{1}+\rho_{2} \operatorname{coth} k h_{2}} \tag{9}
\end{equation*}
$$

In the limit $k h_{1} \ll 1$ and $k h_{2} \ll 1$ this reduces to

$$
\begin{equation*}
\omega^{2}=\frac{g k^{2}\left(\rho_{1}-\rho_{2}\right) h_{1} h_{2}}{\rho_{1} h_{2}+\rho_{2} h_{1}} \tag{10}
\end{equation*}
$$

For $\rho_{2} \rightarrow 0$ this goes over to the shallow water wave result

$$
\begin{equation*}
\omega^{2}=g h_{1} k^{2} . \tag{11}
\end{equation*}
$$

3. Fourier transform. For $S(t)$ the Fourier transform is

$$
\begin{equation*}
S(\omega)=\int_{-\infty}^{+\infty} d t S(t) e^{i \omega t} \tag{12}
\end{equation*}
$$

For the case at hand the function S depends on $t-t_{0}$. So shift the origin of the t integration to t_{0}. This produces the factor $\exp -\omega t_{0}$. The remaining integrals can be brought to the form

$$
\begin{equation*}
I_{G}=\int_{-\infty}^{+\infty} d x e^{-x^{2}+2 A x} \tag{13}
\end{equation*}
$$

where A is a collection of constants. This integral is done by completing the square in the argument of the exponential

$$
\begin{equation*}
I_{G}=e^{A^{2}} \int_{-\infty}^{+\infty} d x e^{-(x-A)^{2}}=\sqrt{\pi} e^{A^{2}} \tag{14}
\end{equation*}
$$

where the Gaussian integral is done by shifting the origin to A. Find

$$
\begin{equation*}
S(\omega)=e^{i \omega t_{0}} \frac{1}{2 i}\left(e^{-\frac{1}{2}(\Delta t)^{2}(\omega+\Omega)^{2}}-e^{-\frac{1}{2}(\Delta t)^{2}(\omega-\Omega)^{2}}\right) \tag{15}
\end{equation*}
$$

4. Dispersion. See the MATLAB listing dispersion in a separate pdf file. The result is shown in Fig. 3.

FIG. 3: The dispersing pulse has returned to the origin where it is compared to its initial form, the compact gaussian, heavy line.

