
Physics 740: Exam 2: 05/07/07

Two Problems. Due 8AM 05/07/07. See note on page 8.

Problem 1. An Artery for Bubba? The velocity of blood flow in an artery, modeled

as the flow between two parallel plates of separation 2R and width b� 2R (R is called the

radius), obeys the equation of motion

∂vx

∂t
= −vx

τ
+ Dη

∂2vx

∂y2
− 1

ρ0

∂P

∂x
, (1)

where Dη = η/ρ0 and P (x) = −(∆P/L)x. Without the first term on the RHS this is

an equation you know (Navier-Stokes for an incompressible fluid). You are interested in

steady flow (∂/∂t = 0) solutions to this slightly more general equation under a variety of

circumstances. An important ingredient of those circumstances will be the influence of fatty

acid (FA) deposits (see below) on the blood flow through the artery. Think Bubba, 3 Big

Macs a day, FA concentration in the blood of nF . The extra term in Eq. (1) comes from the

impedance to fluid flow caused by occasional long chains of FA that cross the artery, Fig. 1;

they may appear to block the flow but remember the second dimension.

1. For fixed artery radius R0 solve Eq. (1) for vx(y) when τ → ∞. Take the boundary

condition on the flow at y = ±R0 to be vx(±R0) = 0. From your solution calculate

the the mass current

Q = ρ0 b
∫ +R0

−R0

dy vx(y). (2)

2. Now go to the opposite limit. Set Dη = 0 at finite τ . For fixed artery radius R0

solve Eq. (1) for vx(y). In this limit it will not be possible to implement the boundary

condition vx(±R0) = 0 because there is no way to have vx vary with y. Assume vx(y)

goes to zero over a very short distances near ±R0 (perhaps on the molecular scale) so

that you can ignore correction due to this. From your solution calculate the the mass

current as above.

Before going on put the answer to these two questions in ohms law form. Ohms law is

I =
1

R
V, (3)

where the voltage difference V causes a current I determined by a coefficient R, called the

resistance, that depends on the geometry of the resistor and on intrinsic properties of the
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FIG. 1: Model for an artery.

stuff the resistor is made of. There is the correspondence ∆P ↔ V , Q↔ I and

Q =
1

RA

∆P, (4)

where RA is the resistance to mass flow of the artery. Calculate RA for the the two cases

above. Call the results Rη
A and Rτ

A for cases 1 and 2 respectively.

For fixed artery radius R0 solve Eq. (1) for vx(y) in the general case. Take the boundary

condition on the flow at y = ±R0 to be vx(±R0) = 0. From your solution calculate the the

mass current from Eq. (2).

1. From the expression for Q calculate RA. Put your answer in the form

RA = Rτ
Af(z), (5)

where z2 = κ2R2
0 and κ2 = 1/(τDη).
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2. Show that when z →∞ you recover Rτ
A.

3. Show that when z → 0 you recover Rη
A.

4. Explain why z (or z2) is the controlling physical variable.

5. Plot f(z) as a function of z.

Fatty acids not only cause τ they also attach to the walls of the artery, reducing its size,

Fig. 1. As they do this they change the flow through the artery. This may not be all bad?

The shear stress near the walls of the artery tends to liberate attached FA. Here is a model

for the effect
dR

dt
= − σ0

|σxy(R)|
1

κ

1

τA

, (6)

where the shear stress at the artery wall is

σxy(R) = −η

(
∂vx

∂y

)
y=R

(7)

σ0 = P0/(κL) and P0 and τA are known parameters.

1. From your solution for vx(y) for generic radius R find the shear stress σxy(R).

2. Plot (∆Pσ0)/(P0|σxy(R)|) as a function of κR,

3. Use σ0/|σxy(R)| in Eq. (6) and find R as a function of time.

4. Plot R as a function of time in the form R/R0 vs t/τF , τF = τA(∆P/P0) for several

values of κR0.

5. Use your result for R(t) to find Q(t).

6. Plot Q as a function of time in the form Q(R(t))/Q(R0) vs t/τF for several values of

κR0.

Note:

(a) In almost all instances R appears in combination with κ. The meaningful variable is κR

not simply R.

(b) Some numbers

1. Consider 0.1 cm < R0 < 1 cm.
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2. Dη = 0.05 cm2/sec, τ = 5 sec.

3. a = 10−7 cm, τA(0) = 10 sec

1

τA

=
1

τA(0)

(
nF

nc
F

− 1

)
, (8)

where

nF = nc
F exp(0.43 rBM), (9)

and rBM is the rate of Big Mac consumption in units per day.

4. ∆P = 0.5P0.

Estimate the time tB for Bubba’s artery to block.

Suppose nF depends on x. Consider two segments of an artery. One segment begins to block.

At fixed ∆P across the entire artery how does this blockage effect the rate of blockage of

the other segment. You might want to think of a pair of resistors in series with a constant

voltage across the pair.
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Problem 2. How to find a Submarine? The Navy has made extensive studies of the

shallow wave, normal modes of the submarine free ocean, described by the equation

∂2δh

∂t2
= g

∂

∂x

(
h0(x)

∂δh

∂x

)
, (10)

where

h0(x) = h0

(
1− x2

a2

)
, − a ≤ x ≤ +a. (11)

When a submarine is trying to hide on the bottom of the ocean, say at x = b = pa, a defect

in h0(x) is created

h0(x) = h0

(
1− x2

a2

)
+ R2δ(x− b), − a ≤ x ≤ +a. (12)

This defect disturbs the normal modes of the ocean and allows the location of the submarine

to be determined. [The problem as stated here is a variation on a famous mathematical

physics problem set by Mark Kac in a paper entitled ”Can you hear the shape of a drum”.]

1. Find the normal mode frequencies of the submarine free ocean, Eqs. (10) and (11).

(a) Be sure to use z = x/a.

(b) Scale ω2 by ω2
0 = c2

0/a
2, c2

0 = gh0, Ω2 = ω2/ω2
0.

(c) The normal modes should be described by a well known orthonormal set of func-

tions that are polynomials. Call these functions φn(x). n = 1, 2, · · ·. [If you do

not find this let me know.]

2. Determine the shift in the normal mode frequencies when the ocean depth profile is

disturbed as in Eq. (12). To do this use the fact that R2/(ah0)� 1 so that the effect

of the submarine can be treated using perturbation theory. [This is the same as time

independent PT problem from quantum mechanics. If you do not know TIPT proceed

as described below.]

3. The Navy flies an earth satellite over the ocean once every 2 hours. The satellite

measures the frequency of the normal modes, (use the Doppler shift caused by surface

motion) usually the lowest 6 to 10 (useful) modes. Based on the frequency shift of

these modes they can track the motion of the submarine.
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FIG. 2: Submarine at the bottom of the ocean.

4. From the data shown in Fig. 3 determine the location of the submarine as a function of

time. [Hint 1. When a fly walks on a drumhead he will modify the frequencies of the

normal modes. A skilled musician can get an idea about where the fly is by listening.

When the fly steps on the node of a normal mode the mode rings true (otherwise

not). Something qualitatively similar happens here.] [Hint 2. There are 6 modes in

the figure. Which are they?]

5. Determine the color of the submarine.
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FIG. 3: Modes of the ocean as a function of time. When submarine is absent (solid lines), when

present (circles).

TIPT

1. The normal modes solve the problem

−Ω2
nφn(z) =

∂

∂z

([
1− z2

] ∂φn(z)

∂z

)
(13)
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with Ω2
n and φn(z) known.

2. When Eq. (12) is used for the depth profile Ω2 and φn(z) change from the values in

Eq. (13). Find

−ν2
nθn(z) =

∂

∂z

([
1− z2

] ∂θn(z)

∂z

)
+ ε

∂

∂z

(
δ(z − p)

∂θn(z)

∂z

)
, (14)

= K0(z)θn(z) + εK1(z)θn(z), (15)

where ε = R2/(ah0). For ε→ 0, ν2
n → Ω2

n and φn → θn. Thus write

ν2
n = Ω2

n + εαn + ε2βn + · · · , (16)

θn(z) = φn(z) + εfn(z) + ε2gn(z) + · · · . (17)

Substitute these expressions into Eq. (14) and find the coefficient of like powers of ε.

These coefficients are set to zero producing a set of equations involving αn, βn, · · ·

fn(z), gn(z), · · · etc. You want the leading frequency shift αn. This is found in the

coefficient of ε which produces

−αnφn + (K0(z)− Ω2
n)fn =

∂

∂z

(
δ(z − p)

∂φn(z)

∂z

)
, (18)

3. Solve for αn. You need two things to do this; (i) the functions φn(z) are orthogonal to

one another and (ii) fn(z) does not contain φn. Multiply by φn and integrate over the

domain of the functions. The equation you find for αn should be sensitive to ∂φn/∂z

at z = p.

Note. Submit your work in 2 parts. Part 1 is a summary sheet, e.g., ”for this

question I found the answer lah-lah”, ... , figures, ... . Part 2 contains the

details — particularly if you are not certain of your answer. In Part 1 cite the

place in Part 2 where each answer was found.
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