Calculated Magnetic Structure in irradiated Fe

CENTER FOR DEFECT PHYSICS (CDP) an Energy Frontier Research Center **DEFRC**

Defect Production During Irradiation

Molecular Dynamics Simulations

Primary damage formation

- Essentially everything that is known about primary damage formation comes from classical molecular dynamics (MD) simulations
- The first few picoseconds set the stage

Molecular dynamics simulations of displacement cascade evolution have spanned 50 years

Experimental measurements of cascade dynamics and evolution will be possible for the first time with sub-picosecond X-ray pulses

Physical Sciences Directorate

Oak Ridge Nationai

Diffusion Quantum Monte Carlo (Randy Hood...)

System		Method		Energy (eV)		Notes	
Vacancy formation		DMC		0.668(8)		124 atom cell	
		Expt		0.67(3), 0.67, 0.66(2)			
Vacanov migration		DMC		0.64(1)		124 atom cell	
	He impurity c	alcūľatio r		Q .62,0.61(3),0.65(6)			
		GGA		-0.07		123 atom cell	
NN divacancy binding		DMC		-0.10(1)		123 atom cell	
		Expt		"0.17(5)"			
	He substitutional	GGA		1.53	5 ³ cell		
		DMC		1.64(2)	4 ³ cell 13 ³ twists		
	He octahedral interstitial formation	GGA		3.24	5 ³ cell		
		DMC		3.53(1)	4 ³ cell 13 ³ twists		
	He tetrahedral interstitial formation	GGA		3.35	5 ³ cell		
		DMC		3.71(1)	4 ³ cell 13 ³ twists		
12 MILLION HOURS!!!!!!!!							

Magnetic Structure [VASP/LSMS]

Fe_{.78} B_{.22}

Fe_{.48} Mn_{.20} Zr_{.10} B_{.22}

Diffusion in Fe48Mn20Zr10B22

Work= Fdx

Fe48Mn20Zr10B22

$$Theory$$
DFT: $E_{v}^{0} = Min_{\rho}E_{v}[\rho]$ $E_{v}[\rho] = \int \rho v + F[\rho]$

$$F[\rho] = Min_{\psi \to \rho} \langle \psi | T + U | \psi \rangle$$
Approximate DFT: $F[\rho] \approx T_{s}[\rho] + U_{classical}[\rho] + E_{x}[\rho] + E_{c}[\rho]$
Other stuff: $E_{v}[\rho_{A} + \rho_{B}]$ $E_{v}[\rho_{\uparrow} + \rho_{\downarrow}]$ $E_{v}\left[\begin{pmatrix}\rho_{\uparrow\uparrow} & \rho_{\uparrow\downarrow}\\ \rho_{\downarrow\uparrow} & \rho_{\downarrow\downarrow}\end{pmatrix}\right]$

$$\begin{pmatrix}v_{\uparrow\uparrow} & v_{\uparrow\downarrow}\\ v_{\downarrow\uparrow} & v_{\downarrow\downarrow}\end{pmatrix} = v_{0}I + v_{x}\sigma_{x} + v_{y}\sigma_{y} + v_{z}\sigma_{z}$$

$$H = \begin{pmatrix}-\nabla^{2} & 0\\ 0 & -\nabla^{2}\end{pmatrix} + \begin{pmatrix}v_{\uparrow} & 0\\ 0 & v_{\downarrow}\end{pmatrix}$$
 $H = \begin{pmatrix}-\nabla^{2} & 0\\ 0 & -\nabla^{2}\end{pmatrix} + \begin{pmatrix}v_{\uparrow\uparrow} & v_{\uparrow\downarrow}\\ v_{\downarrow\uparrow} & v_{\downarrow\downarrow}\end{pmatrix}$

$$L = \langle \psi | i\hbar \frac{d}{dt} - H | \psi \rangle$$
 $L = \langle \psi_{\{m_{i}\}} | i\hbar \frac{d}{dt} - H | \psi_{\{m_{i}\}}\rangle$ $\hbar \dot{\mathbf{m}} = \mathbf{m} \times \mathbf{B}$

Existence of CLM States: DLM Fe

Co on Pt (Ujfalussy)

- Constrained Local Moment States in Fe
 - View CLM state as a single time step in a first principles Spin Dynamics simulation
 - Model Paramagnetic
 Fe : (Iron above its
 Curie temperature)
 - 8x8x4 repeat of body centered cubic cell :- 512 sites
 - Randomly distribute orientations

all-electron methods

<u>All-electron methods</u>:

- Core, semi-core and valence electrons treated on same footing
- Bare Coulomb interaction used
- Muffin-tin orbitals (solid-state): divide space into atomic spheres and interstitial regions. Atomic problement in the spheres, and matched to interstitial solutions.
 - KKR LMTO (Hankel functions)
 - > APW LAPW (Plane waves)
 - ASW (Spherical waves)
- Localized basis sets (quantum chemistry):
 - Gaussian-type orbitals (GTO)
 - Slater-type orbitals (STO)
 - Linear combination of atomic orbitals (LCAO)

Green's Function

Free electron Green's function :

$$(-\nabla^{2} - E)G_{0}(r, r', E) = \delta(r - r')$$

$$G_{0}(r, r', E) = \frac{1}{4\pi} \frac{e^{i\sqrt{E}|r - r'|}}{|r - r'|}$$

Wave function: $\Psi_k(\vec{r}) = \chi(\vec{r}) + \int G_0(\vec{r},\vec{r'})V(\vec{r'})\psi(\vec{r'})d^3\vec{r'}$

$$G(\mathbf{r}, \mathbf{r}', E) = G_o(\mathbf{r}, \mathbf{r}', E) + \int G_o(\mathbf{r}, \mathbf{r}'', E) V(\mathbf{r}'') G(\mathbf{r}'', \mathbf{r}', E) d\mathbf{r}''$$
$$n(\vec{r}) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F} TrG(\vec{r}, \vec{r}; \varepsilon) d\varepsilon$$
$$\vec{m}(\vec{r}) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F} TrG(\vec{r}, \vec{r}; \varepsilon) \vec{\sigma} d\varepsilon$$

Scattering at a single potential

 $G = G_0 + G_0 V G_0 + G_0 V G_0 V G_0 + G_0 V G_0 V G_0 V G_0 + \dots$ = $G_0 + G_0 (V + V G_0 V + V G_0 V G_0 V + \dots) G_0$ = $G_0 + G_0 t G_0$

Multiple scattering

 $G = G_0 + G_0 tG_0 + G_0 tG_0 tG_0 + G_0 tG_0 tG_0 tG_0 tG_0 + \dots$ = $G_0 + G_0 TG_0$ = $\frac{G_0}{1 - tG_0}$

O[N] electronic Structure Methods for Extended Defects

LSDA and Finite Temperature Magnetism

- LSDA is theory of ground states
- Correct magnetic ground state
- $Moment(m_B)$ Fe Ni Calc.LSDA 2.17 2.08 0.57 Expt. 32.0 Ferromagnetic Ni 16.0 density of states E 0.0 -16.0 ^{0.00}0.5eV 0.40 0.60 0.80 energy (Ry)

LSDA magnetism at finite temperature

Finite Temperature Magnetism: Locally Selfconsistent Multiple Scatering (LSMS), Order N constrained DFT

Statistical Physics of Moment Orientations

- Wang-Landau Monte Carlo algorithm and high performance computing facilitate *ab initio* studies of finite temperature magnetic fluctuations
 - Calculate statistical density of states
 - Thermodynamics at all temperatures

$$\Delta G(T) = \int_{0}^{H_{\text{max}}} M(T) dH$$

Cray-Titan peak speed 10 - 20 petaflops. Latest AMD Opteron and NVIDIA Tesla, 299,008 cores/ 600 terabytes of memory

Wang-Landau-LSMS allows multi-level parallelism

Ab Initio Simulations of Magnetic State

Magnetic Moment (Bohr magneton)

Ab Initio Simulations of Magnetic State

Magnetic Moment (Bohr magneton)

18

Local Moments in Radiation Damage: Number of Atoms 54000 Number of Representative Atoms 1241 Time Step 1500

Summary

- The study of defects pushes us to develop techniques for the arbitrary, large, complex structures that are important for structural materials, information processing, energy collection, biology...
- There are many challenges: formalism, algorithms, computer science, hardware.
- The study of unit defect events pushes experiment toward the small and fast and theory toward the large and slow.

Acknowledgment

This research was performed at Oak Ridge National Laboratory (ORNL) and is based upon work supported as part of the Center for Defect Physics in Structural Materials (CDP), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. This research used resources of the Oak Ridge Leadership Computing Facility at ORNL, which is supported by the Office of Science of the Department of Energy under contract DE-AC05-000R22725.