Physics 740: Spring 2007:

## Waves.

1. In a compressible fluid the dispersion relation, (the $\omega-\mathbf{k}$ relation), for wave propagation is

$$
\begin{gather*}
\omega^{2}=k^{2} c_{0}^{2}(\omega)-i \frac{4}{3} k^{2} D_{\eta} \omega-i k^{2} c_{R}^{2} \frac{\frac{k^{2} D_{\kappa}}{\omega}}{1+\left(\frac{k^{2} D_{\kappa}}{\omega}\right)^{2}}=k^{2} c_{0}^{2}(\omega)-i R_{\eta}-i R_{\kappa}  \tag{1}\\
c_{0}^{2}(\omega)=c_{T}^{2}+c_{R}^{2} \frac{1}{1+\left(\frac{k^{2} D_{\kappa}}{\omega}\right)^{2}}  \tag{2}\\
c_{R}^{2}=\frac{\Lambda_{\theta} \theta_{0}}{\rho_{0} C_{V}} \tag{3}
\end{gather*}
$$

where $c_{T}^{2}=(\partial p / \partial \rho)_{T}$ is the isothermal sound speed and $c_{T}^{2}+c_{R}^{2}$ is the adiabatic sound speed, $c_{T}^{2}=(\partial p / \partial \rho)_{S}$, check this in your Thermo text. See solution to HW3 for further details.
2. A fluid with a free surface, fluid film, an ocean, etc. can generally be regarded as incompressible, $\rho=\rho_{0}$ and $(\partial p / \partial \rho)=0$. The forces that drive the fluid are external forces that work on nonequilibrium arrangements of the fluid.
2.a Shallow water. See Fig. 1. The continuity equation is replaced by the rate of change of the height

$$
\begin{equation*}
\frac{\partial \delta h}{\partial t}+\nabla \cdot h_{0} \mathbf{v}=0 \tag{4}
\end{equation*}
$$

where usually $h_{0}$ can be passed through $\nabla$ if it is independent of $x$. The equivalent of the Euler equation is an equation for $\mathbf{v}$ (which is independent of $z$ and describes the $x, y$ motion of an entire column of fluid)

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}=-g \nabla \delta h \tag{5}
\end{equation*}
$$

These two equations lead to the shallow water wave equation

$$
\begin{equation*}
\frac{\partial^{2} \delta h}{\partial t^{2}}=g h_{0} \nabla^{2} \delta h \tag{6}
\end{equation*}
$$

when $h_{0}$ is independent of $x$. The equilibrium surface of the fluid is a constant height. It is possible that the bottom of the fluid varies, e.g., an ocean. Then $h_{0}$ depends on $x$ and we would have

$$
\begin{equation*}
\frac{\partial^{2} \delta h}{\partial t^{2}}=g \nabla \cdot\left(h_{0} \nabla \delta h\right) \tag{7}
\end{equation*}
$$

shallow "water" wave


FIG. 1: Conservation of fluid for shallow water.
2.b Deep water. See Fig. 2. In the deep water case we have to retreat to a more formal treatment of the fluid. The variable that describes the displacement of the surface from its undisturbed fluid location is $\zeta(x, y, t)$. At the bottom of the fluid we have the usual boundary condition $\mathbf{v} \cdot \mathbf{n}=0$. In the interior of the fluid we have

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{8}
\end{equation*}
$$

At the top of the fluid we have to relate $\zeta$ to $\phi$, the pressure, the gravitational force, etc. To do this we write out the Bernoulli equation is general form. From the manipulations in P740.9.tex we had the Euler equation in the form

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}-\mathbf{v} \times(\nabla \times \mathbf{v})=-\nabla\left(\frac{P}{\rho_{0}}+\frac{1}{2} v^{2}+U\right) \tag{9}
\end{equation*}
$$

where $\rho_{0}$ a constant, $\nabla \times \mathbf{v}=0, \mathbf{v}=\nabla \phi$ and $-\nabla U$ gives the force per unit mass. Thus

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{P}{\rho_{0}}+\frac{1}{2} v^{2}+U=C . \tag{10}
\end{equation*}
$$

incompressible fluid with free surface


FIG. 2: Deep water.

On the free surface of the fluid

1. the term in $v^{2}$ is second order and can be dropped,
2. $P=P_{0}$,
3. $U=g \zeta$,
4. choose $\phi=\hat{\phi}-\left(C+P_{0} / \rho_{0}\right) t$ to get rid of the constant factors.

Then

$$
\begin{equation*}
\frac{\partial \hat{\phi}}{\partial t}+g \zeta=0 \tag{11}
\end{equation*}
$$

We also have

$$
\begin{equation*}
v_{z}=\frac{\partial \hat{\phi}}{\partial z}=\frac{\partial \zeta}{\partial t} . \tag{12}
\end{equation*}
$$

Thus on the fluid surface we have

$$
\begin{equation*}
\frac{\partial \hat{\phi}}{\partial z}=-\frac{1}{g} \frac{\partial^{2} \hat{\phi}}{\partial t^{2}} \tag{13}
\end{equation*}
$$

Summary. For an incompressible fluid with a free surface

1. $\nabla^{2} \hat{\phi}=0$ in the interior of the fluid,
2. $\mathbf{n} \cdot \mathbf{v}=0$ on the bottom of fluid,
3. 

$$
\begin{equation*}
\frac{\partial \hat{\phi}}{\partial z}=-\frac{1}{g} \frac{\partial^{2} \hat{\phi}}{\partial t^{2}} \tag{14}
\end{equation*}
$$

at the top of the fluid.

Example. A simple fluid of uniform depth $h_{0}$. Choose

$$
\begin{equation*}
\hat{\phi} \equiv \phi=Z(z) X(x) e_{-i \omega t} . \tag{15}
\end{equation*}
$$

Then

$$
\begin{gather*}
\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}+\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\kappa^{2}-\kappa^{2}=0  \tag{16}\\
X \propto \sin \kappa x  \tag{17}\\
Z \propto \cosh \kappa\left(h_{0}+z\right) \tag{18}
\end{gather*}
$$

where this choice of $Z$ is such that $d Z / d z \propto \sinh \kappa\left(h_{0}+z\right)=0$ at $z=-h_{0}$. From Eq. (14) find

$$
\begin{equation*}
\omega^{2}=g \kappa \tanh \kappa h_{0} \tag{19}
\end{equation*}
$$

the dispersion relation for water waves.

1. shallow water, $\kappa h_{0} \ll 1$,

$$
\begin{equation*}
\omega^{2}=g h_{0} \kappa^{2} \tag{20}
\end{equation*}
$$

2. deep water, $\kappa h_{0} \gg 1$,

$$
\begin{equation*}
\omega^{2}=g \kappa \tag{21}
\end{equation*}
$$

