Mathematical model

Concentration and potential in the electrolyte
To estimate the concentration development in the electrolyte, Nernst-Planck’s equation is used to calculate flux of species j [22]:
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In eq. (1), ci is concentration, Di the diffusion coefficients of respective ion type, zi their charge, F is Faraday’s constant, R the universal gas constant and φ the potential in electrolyte. According to [22], the concentration variation in time is given by:
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Taking into account that only Li+ ions can travel through the electrode-electrolyte interface, and that the electrode kinetics in Li-ion battery is comparably fast, the Li+ ion flux can be described by 
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 [22], where j is the current density. Then, by combining eqs. (1) and (2) we can formulate the following equations for the diffusion-migration processes in the electrolyte for both Li+ and PF6- ions:
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Since electro-neutrality in the electrolyte is assumed, i.e., 
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When eqs. (6) and (7) are combined and multiplied by DPF6 and DLi, respectively, the following expression for calculating the concentration distribution in the electrolyte is achieved:
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(10)
The initial value of the concentration (c0) is specified in Table 1. Suitable boundary conditions for eq. (10) can be derived similarly by combining eqs. (8) and (9) and multiplying the result by the unit normal vector n, leading to: 
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To calculate the potential in the electrolyte (φ), eqs. (7) and (6) can be subtracted and multiplied with F. Taking into account the assumption that the diffusion coefficient is constant, the electrolyte potential can be calculated according to:
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(12)
To find boundary condition for eq. (12), eqs. (9) and (8) are subtracted and multiplied with both F and unit normal vector:
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Eqs. (12) and (13) can then be simplified by noticing that 
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 according to Nernst-Einstein’s equation for ionic conductivity and the so called external current density
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When comparing eqs. (14) and (16), first one describing potential in the electrolyte and second potential in the electrodes, it can be seen that the only difference between these is the additional “external” current density applied to the electrolyte, originating from concentration polarization. 

2.1.2 Potential in the electrodes

To calculate the potential distribution in the current collectors and in the active material of the electrodes, Ohm’s law is used. The anode, cathode and current collectors all have constant electronic conductivity (Table 1). The electrical current enters from current collector at the anode side and exits through the current collector at the cathode side. The current density in the battery is calculated by:
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where φ is the electrode potential, j0 is discharging current in the current collector of the positive electrode and σi is conductivity. Different i values represent the positive current collector (i=1), the positive active material (i=2), negative active material (i=4) and negative current collector (i=5). A current continuity boundary condition is used at the interfaces between the active material and the current collectors. Negative current collector is grounded, as specified by eq. (18).
2.1.3 Steady state simulations

To carry on steady state simulations, the term ∂c/∂t is set to 0. Unfortunately, there is under this condition no unique solution for eqs. (10) and (11). Therefore, the constant artificial reaction rate R is introduced:
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where Ω is the electrolyte region, V the volume of the electrolyte, c0 the initial concentration and c concentration. Eq. (19) will enforce electroneutrality in the system by ensuring that the total number of ions will always stay constant in the electrolyte. At steady state, eqs. (10) and (11) give the concentration profile while eq. (19) ensures correct concentration values.

Consequently, the steady state concentration distribution can be calculated from the following equations:
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It can be noted that the solution of the potential, calculated by equations (14) and (16)-(18), is unique, since the potential value is fixed as ground (φ=0) on the negative electrode.
Time dependent simulations of concentric geometries

In time dependent simulations, porous electrodes are used. Usually, prorous electrodes can be visualized as a composite of the electrolyte, active material, binder and additives (e.g. or electronic conduction). 2D battery with porous electrodes is schematically visualized on Figure 9.
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Figure 4 Porous electrodes.

In time dependent simulations, Comsol Multiphysics with Battery and fuel cell module is used, battery is simulated by using Li-ion battery toolbox. Correspondingly, in simulations, porous electrodes are used for both, anode and cathode.

Equations are same, as in our previous works (JOPS article …).

Geometry Optimization criteria 

Average fulx in the electrolyte

To characterize ionic transport in the battery average diffusive flux x-,y- and z-components  of diffusive flux are calculated and normalized, so that sum of these normalized average flux values is 3:
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 These quantities are marked further as Jx, Jy, Jz, or shortened as vector J=( Jx, Jy, Jz) 
To describe ionic transport in the battery, we are searching a configuration where all components of J are equal to 1. Then, we postulate, that the advantages of 3D geometry are volumetrically used with maximum efficiency. To measure, how far away is current geometry from ideal one, we calculate distance between two following vectors Jideal and J. As Jideal=(1,1,1) and J=( Jx, Jy, Jz), resulting quantity is achieved from equation:
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When we compare R values and concentration gradient plots, we see that current optimization function is fails to provide geometrical parameters to achieve most uniform concentration gradient. So, we have to find another, better optimization function. Two of them are plotted on figures below. Blue is old optimization function, red and green are new.

Spatially nonuniform electrode surface area distribution

To calculate green function, similar operation to calculating weighted average is used. Quantities Ji  are divided by weights obtained from the following derivation:
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As a result, optimization function for the 3D-MB is
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Weights are multiplied by 3, as values of Ji are normalized to 3.
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Figure 2 Geometrical setup of the system.
Different 3D-MB geometries
3d-Interdigitated geometry – optimal geometrical configurations
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Concentration gradient in the 3D-interdigitated geometry.
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We can see, that green function provides Rgreen values, coinciding well with concentration gradient distributions for distance between the pillars. Unfortunately, it fails in pillar height simulations (or maybe it is just proposing higher pillar heights than used in simulations).

Red function provides similar minimum Rred close to green functions and it is working well also in pillar height simulations. There, it is suggesting a bit higher pillars than calculated with blue, original function. Corresponding concentration gradient distributions are presented below.

Time dependent simulations

Parametric simulations of the interdigitated geometry with variable pillar height and distance between the pillars revealed optimal distance between the pillars less thant 2µm and height of the pillar higher than 100µm. To verify the superiority of the optimized geometry,  time dependent simulations for charging-discharing of different geometries was carried out. The reference geometry was “bad one” with pillar height 40µm and distance between the pillars 10µm. For comparison, the optimized geometry was with pillar height 100µm and distance between the pillars 2µm.
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Figure 9. Charging and discharging curves of optimal(blue) and non-optimal(red) 3D-interdigitated geometries. Close to optimal geometry is estimated by assuming thin film solid electrodes. Time dependent simulations are carried out by using porous electrodes.
3d-concentric geometry 

Concengrig geometry with one current collector only seemed to promise quite low performance in initial simulations. However, swapping the positive and negative electrode, changed the picture and produced almost linear normal directional concentration profiles (leading to the constant concentration gradient), similar to the situation, we are looking. The results are presented on Figure 10.
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Figure 3 Variations of the concentric geometry. At the left, CC-N-El-P. At the middle, CC-P-EL-N-CC. At the right, CC-P-EL-N.

However, during time dependent simulations, situation changed. At the beginning, during the charging process, nice voltage curve was obtained. During the discharge, however, only approximately half of the active material, transported to the negative electrode, was reused.  

Time dependent simulations of the 3d-concentric geometry

In these first simulations, 3D-concentric geometry in configuration CC-P-El-N is used. The current density in the simulations was 10A/m2, height of the pillar was  40µm.
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Figure 11 Charging(blue) and discharging(green) of the concentric geometry with 10 A/m2 current (approximately 10C current). Approximately  half of the active material became unusable and stayed in the negative electrode. It is an effect of very large negative electrode.

Charing the 3d-concentric geometry with one current collector.
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Figure 6 3D-concentric geometry with current collector only on the negative electrode. Left image presents battery voltage during the charing, right image shows optimization parameter time dependence.
Charging the 3d-concentric geometry with two current collectors
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Figure 7 3D-concentric geometr with current collectors on both electrodes. Left image presents battery voltage during the charing, right image shows optimization parameter time dependence.
Bruce Dunn’s geometry
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On the figures, concentration distribution in the battery designs is presented. Electrodes, are graphite and LiCoO2 with polymer electrolyte between them. Different geometries are have been probed:

1. Concentric with current collector on the negative electrode

2. Concentric with current collector on both electrodes + geometry sweep for different electrolyte layer thicknesses

3. Bruce Dunns geometry, where positive and negative electrode pillars are standing next to each other, current collectors are at the bottoms of the pillars.
 Concentric model. Left – one current collector, at the bottom side of the image. Right two current collectors. System with two current collectors is showing better results due to more favorable concentration distribution.
Left - Res for concentric model with two current collectors. Right Bruce Dunns geometry. With current material parameters and geometrical layout, the worst geometry tested.
2d Battery charging as a reference 
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Figure 5 2d battery simulation for reference.
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